弱强制算子和紧凑扰动

Pub Date : 2023-12-01 DOI:10.1515/ms-2023-0112
J. M. Soriano Arbizu, Manuel Ordoñez Cabrera
{"title":"弱强制算子和紧凑扰动","authors":"J. M. Soriano Arbizu, Manuel Ordoñez Cabrera","doi":"10.1515/ms-2023-0112","DOIUrl":null,"url":null,"abstract":"ABSTRACT Let X, Y be two Banach spaces over K=ℝ \\[\\mathbb{K}=\\mathbb{R}\\] or ℂ \\[\\mathbb{C}\\] , and let f := F+C be a weakly coercive operator from X onto Y, where F is a Fredholm proper operator, and C is a C1-compact operator. Sufficient conditions are provided to assert that the perturbed operator f is a C1-diffeomorphism. When one of these conditions does not hold and instead y is a regular value, the equation f(x) = y has at most finite number of solutions. As a consequence of the main result two corollaries are given. A second theorem studies the finite dimensional case. As an application, one example is given. The proof of our results is based on properties of Fredholm operators, as well as on local and global inverse mapping theorems.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operators that are Weakly Coercive and a Compact Perturbation\",\"authors\":\"J. M. Soriano Arbizu, Manuel Ordoñez Cabrera\",\"doi\":\"10.1515/ms-2023-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Let X, Y be two Banach spaces over K=ℝ \\\\[\\\\mathbb{K}=\\\\mathbb{R}\\\\] or ℂ \\\\[\\\\mathbb{C}\\\\] , and let f := F+C be a weakly coercive operator from X onto Y, where F is a Fredholm proper operator, and C is a C1-compact operator. Sufficient conditions are provided to assert that the perturbed operator f is a C1-diffeomorphism. When one of these conditions does not hold and instead y is a regular value, the equation f(x) = y has at most finite number of solutions. As a consequence of the main result two corollaries are given. A second theorem studies the finite dimensional case. As an application, one example is given. The proof of our results is based on properties of Fredholm operators, as well as on local and global inverse mapping theorems.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2023-0112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2023-0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ABSTRACT Let X, Y be two Banach spaces over K=ℝ \[\mathbb{K}=\mathbb{R}\] or ℂ \[\mathbb{C}\] , and let f := F+C be a weakly coercive operator from X onto Y, where F is a Fredholm proper operator, and C is a C1-compact operator.我们提供了充分条件来断言扰动算子 f 是 C1-差分。当其中一个条件不成立,而 y 是一个正则值时,方程 f(x) = y 最多有有限个解。作为主要结果的结果,给出了两个推论。第二个定理研究的是有限维情况。作为应用,给出了一个例子。我们结果的证明基于弗雷德霍姆算子的性质以及局部和全局逆映射定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Operators that are Weakly Coercive and a Compact Perturbation
ABSTRACT Let X, Y be two Banach spaces over K=ℝ \[\mathbb{K}=\mathbb{R}\] or ℂ \[\mathbb{C}\] , and let f := F+C be a weakly coercive operator from X onto Y, where F is a Fredholm proper operator, and C is a C1-compact operator. Sufficient conditions are provided to assert that the perturbed operator f is a C1-diffeomorphism. When one of these conditions does not hold and instead y is a regular value, the equation f(x) = y has at most finite number of solutions. As a consequence of the main result two corollaries are given. A second theorem studies the finite dimensional case. As an application, one example is given. The proof of our results is based on properties of Fredholm operators, as well as on local and global inverse mapping theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信