Štěpán Jedlan, Martin Ševeček, A. Prantl, J. Hodek, Pavel Podaný, Michal Brázda
{"title":"热处理对用于核反应堆的 L-DED 印刷奥氏体合金 08CH18N10T 材料性能的影响","authors":"Štěpán Jedlan, Martin Ševeček, A. Prantl, J. Hodek, Pavel Podaný, Michal Brázda","doi":"10.14311/app.2023.44.0001","DOIUrl":null,"url":null,"abstract":"This paper deals with the evaluation of material properties of the additively manufactured austenistic alloy 08CH18N10T, which is widely used in the Czech Republic nuclear power plants Temelín and Dukovany and other VVER reactors around the world. For purposes of utilization of additive manufacturing technologies for nuclear core components fabrication, two sets of samples were prepared from horizontally and vertically L-DED printed blocks from 08CH18N10T material. Experiments such as microstructure analysis, porosity and Vickers hardness were then performed on L-DED printed and heat-treated 08CH18N10T material, and the obtained material properties were then compared with the properties of L-DED printed 08CH18N10T material without heat-treatment for examination of its effect and also with material properties of conventionally made 08CH18N10T material.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat-treatment on material properties of L-DED printed austenistic alloy 08CH18N10T for nuclear reactor applications\",\"authors\":\"Štěpán Jedlan, Martin Ševeček, A. Prantl, J. Hodek, Pavel Podaný, Michal Brázda\",\"doi\":\"10.14311/app.2023.44.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the evaluation of material properties of the additively manufactured austenistic alloy 08CH18N10T, which is widely used in the Czech Republic nuclear power plants Temelín and Dukovany and other VVER reactors around the world. For purposes of utilization of additive manufacturing technologies for nuclear core components fabrication, two sets of samples were prepared from horizontally and vertically L-DED printed blocks from 08CH18N10T material. Experiments such as microstructure analysis, porosity and Vickers hardness were then performed on L-DED printed and heat-treated 08CH18N10T material, and the obtained material properties were then compared with the properties of L-DED printed 08CH18N10T material without heat-treatment for examination of its effect and also with material properties of conventionally made 08CH18N10T material.\",\"PeriodicalId\":7150,\"journal\":{\"name\":\"Acta Polytechnica CTU Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica CTU Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/app.2023.44.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.44.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of heat-treatment on material properties of L-DED printed austenistic alloy 08CH18N10T for nuclear reactor applications
This paper deals with the evaluation of material properties of the additively manufactured austenistic alloy 08CH18N10T, which is widely used in the Czech Republic nuclear power plants Temelín and Dukovany and other VVER reactors around the world. For purposes of utilization of additive manufacturing technologies for nuclear core components fabrication, two sets of samples were prepared from horizontally and vertically L-DED printed blocks from 08CH18N10T material. Experiments such as microstructure analysis, porosity and Vickers hardness were then performed on L-DED printed and heat-treated 08CH18N10T material, and the obtained material properties were then compared with the properties of L-DED printed 08CH18N10T material without heat-treatment for examination of its effect and also with material properties of conventionally made 08CH18N10T material.