{"title":"钴铁氧体催化分子氧氧化苄醇","authors":"R. Changwal, R. Ameta, S. Ameta","doi":"10.25303/281rjce91097","DOIUrl":null,"url":null,"abstract":"Oxidation of alcohols to aldehydes/ketones/carboxylic acids is a crucial step in organic synthesis. Normally, strong oxidants oxidize alcohol to carboxylic acid and this reaction may or may not stop at the intermediate steps to form aldehyde and ketone. Some mild oxidants are required to stop it here at this stage. Here, molecular oxygen can help in achieving this objective, but there is a disadvantage to use molecular oxygen as an oxidant as it has a slow rate of oxidation. Hence, such a reaction may be catalyzed by metal ferrites. These metal ferrites are easy to separate by using an external magnet and can be recycled. Cobalt ferrite has been used for the oxidation of benzyl alcohols to corresponding benzaldehydes.","PeriodicalId":21012,"journal":{"name":"Research Journal of Chemistry and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidation of benzyl alcohols by molecular oxygen catalyzed by cobalt ferrite\",\"authors\":\"R. Changwal, R. Ameta, S. Ameta\",\"doi\":\"10.25303/281rjce91097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidation of alcohols to aldehydes/ketones/carboxylic acids is a crucial step in organic synthesis. Normally, strong oxidants oxidize alcohol to carboxylic acid and this reaction may or may not stop at the intermediate steps to form aldehyde and ketone. Some mild oxidants are required to stop it here at this stage. Here, molecular oxygen can help in achieving this objective, but there is a disadvantage to use molecular oxygen as an oxidant as it has a slow rate of oxidation. Hence, such a reaction may be catalyzed by metal ferrites. These metal ferrites are easy to separate by using an external magnet and can be recycled. Cobalt ferrite has been used for the oxidation of benzyl alcohols to corresponding benzaldehydes.\",\"PeriodicalId\":21012,\"journal\":{\"name\":\"Research Journal of Chemistry and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Journal of Chemistry and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25303/281rjce91097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/281rjce91097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Oxidation of benzyl alcohols by molecular oxygen catalyzed by cobalt ferrite
Oxidation of alcohols to aldehydes/ketones/carboxylic acids is a crucial step in organic synthesis. Normally, strong oxidants oxidize alcohol to carboxylic acid and this reaction may or may not stop at the intermediate steps to form aldehyde and ketone. Some mild oxidants are required to stop it here at this stage. Here, molecular oxygen can help in achieving this objective, but there is a disadvantage to use molecular oxygen as an oxidant as it has a slow rate of oxidation. Hence, such a reaction may be catalyzed by metal ferrites. These metal ferrites are easy to separate by using an external magnet and can be recycled. Cobalt ferrite has been used for the oxidation of benzyl alcohols to corresponding benzaldehydes.