模拟集成电路设计中的进化优化技术

Mendel Pub Date : 2023-12-07 DOI:10.13164/mendel.2023.2.245
Trang Hoang, Bao Quoc Bui, Hoang Trong Nguyen, Phuc That Bao Ton
{"title":"模拟集成电路设计中的进化优化技术","authors":"Trang Hoang, Bao Quoc Bui, Hoang Trong Nguyen, Phuc That Bao Ton","doi":"10.13164/mendel.2023.2.245","DOIUrl":null,"url":null,"abstract":"The proposed genetic algorithm (GA) and particle swarm optimization (PSO) applied for the optimal design of a one-stage operational amplifier circuit with a current mirror load are studied in this work. The sizes of transistors are optimized using the proposed GA and PSO for improved areas and performance parameters of the circuit. A number of performance parameters are collected from the data set created by GA and PSO to optimize the size of transistors and other design parameters. The Spectre simulator is chosen for the simulation of circuit parameters to obtain necessary for the GA and PSO algorithm. Post-optimization results justify that the proposed GA and PSO methods are competitive with differential evolution regarding convergence speed, design specifications, and the optimal CMOS one-stage operational amplifier circuit parameters.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"23 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Optimization Techniques in Analog Integrated Circuit Designs\",\"authors\":\"Trang Hoang, Bao Quoc Bui, Hoang Trong Nguyen, Phuc That Bao Ton\",\"doi\":\"10.13164/mendel.2023.2.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed genetic algorithm (GA) and particle swarm optimization (PSO) applied for the optimal design of a one-stage operational amplifier circuit with a current mirror load are studied in this work. The sizes of transistors are optimized using the proposed GA and PSO for improved areas and performance parameters of the circuit. A number of performance parameters are collected from the data set created by GA and PSO to optimize the size of transistors and other design parameters. The Spectre simulator is chosen for the simulation of circuit parameters to obtain necessary for the GA and PSO algorithm. Post-optimization results justify that the proposed GA and PSO methods are competitive with differential evolution regarding convergence speed, design specifications, and the optimal CMOS one-stage operational amplifier circuit parameters.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2023.2.245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.2.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了应用遗传算法(GA)和粒子群优化(PSO)对带电流镜负载的单级运算放大器电路进行优化设计的问题。利用所提出的 GA 和 PSO 优化了晶体管的尺寸,以改善电路的面积和性能参数。从 GA 和 PSO 创建的数据集中收集了大量性能参数,以优化晶体管的尺寸和其他设计参数。选择 Spectre 仿真器对电路参数进行仿真,以获得 GA 和 PSO 算法所需的参数。优化后的结果证明,在收敛速度、设计规格和最佳 CMOS 单级运算放大器电路参数方面,所提出的 GA 和 PSO 方法与差分进化法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Optimization Techniques in Analog Integrated Circuit Designs
The proposed genetic algorithm (GA) and particle swarm optimization (PSO) applied for the optimal design of a one-stage operational amplifier circuit with a current mirror load are studied in this work. The sizes of transistors are optimized using the proposed GA and PSO for improved areas and performance parameters of the circuit. A number of performance parameters are collected from the data set created by GA and PSO to optimize the size of transistors and other design parameters. The Spectre simulator is chosen for the simulation of circuit parameters to obtain necessary for the GA and PSO algorithm. Post-optimization results justify that the proposed GA and PSO methods are competitive with differential evolution regarding convergence speed, design specifications, and the optimal CMOS one-stage operational amplifier circuit parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信