Javier Gómez, J. Camacho-Escoto, Luis Orozco-Barbosa, Diego Rodriguez-Torres
{"title":"PROFEE:基于概率反馈的 IEEE 802.11bc 速率自适应算法","authors":"Javier Gómez, J. Camacho-Escoto, Luis Orozco-Barbosa, Diego Rodriguez-Torres","doi":"10.3390/fi15120396","DOIUrl":null,"url":null,"abstract":"WiFi is a widely used wireless technology for data transmission. WiFi can also play a crucial role in simultaneously broadcasting content to multiple devices in multimedia transmission for venues such as classrooms, theaters, and stadiums, etc. Broadcasting allows for the efficient dissemination of information to all devices connected to the network, and it becomes crucial to ensure that the WiFi network has sufficient capacity to transmit broadcast multimedia content without interruptions or delays. However, using WiFi for broadcasting presents challenges that can impact user experience, specifically the difficulty of obtaining real-time feedback from potentially hundreds or thousands of users due to potential collisions of feedback messages. This work focuses on providing accurate feedback to the Access Point about the percentage of users not receiving broadcast traffic correctly so it can adjust its Modulation and Coding Scheme (MCS) while transmitting broadcast multimedia content to many users. The proposed method is comprised of two sequential algorithms. In order to reduce the probability of a collision after transmitting each message, an algorithm searches for the best probability value for users to transmit ACK/NACK messages, depending on whether messages are received correctly or not. This feedback allows the Access Point to estimate the number of STAs correctly/incorrectly receiving the messages being transmitted. A second algorithm uses this estimation so the Access Point can select the best MCS while maintaining the percentage of users not receiving broadcast content correctly within acceptable margins, thus providing users with the best possible content quality. We implemented the proposed method in the ns-3 simulator, and the results show it yields quick, reliable feedback to the Access Point that was then able to adjust to the best possible MCS in only a few seconds, regardless of the user density and dimensions of the scenario.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":"509 ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROFEE: A Probabilistic-Feedback Based Speed Rate Adaption for IEEE 802.11bc\",\"authors\":\"Javier Gómez, J. Camacho-Escoto, Luis Orozco-Barbosa, Diego Rodriguez-Torres\",\"doi\":\"10.3390/fi15120396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi is a widely used wireless technology for data transmission. WiFi can also play a crucial role in simultaneously broadcasting content to multiple devices in multimedia transmission for venues such as classrooms, theaters, and stadiums, etc. Broadcasting allows for the efficient dissemination of information to all devices connected to the network, and it becomes crucial to ensure that the WiFi network has sufficient capacity to transmit broadcast multimedia content without interruptions or delays. However, using WiFi for broadcasting presents challenges that can impact user experience, specifically the difficulty of obtaining real-time feedback from potentially hundreds or thousands of users due to potential collisions of feedback messages. This work focuses on providing accurate feedback to the Access Point about the percentage of users not receiving broadcast traffic correctly so it can adjust its Modulation and Coding Scheme (MCS) while transmitting broadcast multimedia content to many users. The proposed method is comprised of two sequential algorithms. In order to reduce the probability of a collision after transmitting each message, an algorithm searches for the best probability value for users to transmit ACK/NACK messages, depending on whether messages are received correctly or not. This feedback allows the Access Point to estimate the number of STAs correctly/incorrectly receiving the messages being transmitted. A second algorithm uses this estimation so the Access Point can select the best MCS while maintaining the percentage of users not receiving broadcast content correctly within acceptable margins, thus providing users with the best possible content quality. We implemented the proposed method in the ns-3 simulator, and the results show it yields quick, reliable feedback to the Access Point that was then able to adjust to the best possible MCS in only a few seconds, regardless of the user density and dimensions of the scenario.\",\"PeriodicalId\":37982,\"journal\":{\"name\":\"Future Internet\",\"volume\":\"509 \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fi15120396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi15120396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
PROFEE: A Probabilistic-Feedback Based Speed Rate Adaption for IEEE 802.11bc
WiFi is a widely used wireless technology for data transmission. WiFi can also play a crucial role in simultaneously broadcasting content to multiple devices in multimedia transmission for venues such as classrooms, theaters, and stadiums, etc. Broadcasting allows for the efficient dissemination of information to all devices connected to the network, and it becomes crucial to ensure that the WiFi network has sufficient capacity to transmit broadcast multimedia content without interruptions or delays. However, using WiFi for broadcasting presents challenges that can impact user experience, specifically the difficulty of obtaining real-time feedback from potentially hundreds or thousands of users due to potential collisions of feedback messages. This work focuses on providing accurate feedback to the Access Point about the percentage of users not receiving broadcast traffic correctly so it can adjust its Modulation and Coding Scheme (MCS) while transmitting broadcast multimedia content to many users. The proposed method is comprised of two sequential algorithms. In order to reduce the probability of a collision after transmitting each message, an algorithm searches for the best probability value for users to transmit ACK/NACK messages, depending on whether messages are received correctly or not. This feedback allows the Access Point to estimate the number of STAs correctly/incorrectly receiving the messages being transmitted. A second algorithm uses this estimation so the Access Point can select the best MCS while maintaining the percentage of users not receiving broadcast content correctly within acceptable margins, thus providing users with the best possible content quality. We implemented the proposed method in the ns-3 simulator, and the results show it yields quick, reliable feedback to the Access Point that was then able to adjust to the best possible MCS in only a few seconds, regardless of the user density and dimensions of the scenario.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.