{"title":"考虑导轨几何误差和滑块位置的双驱动滚珠丝杠副载荷分布分析和接触刚度预测","authors":"Zhifeng Liu, Weiliang Zuo, Baobao Qi, C. Chen, Jinyan Guo, Dong Li, Shan Gao","doi":"10.3390/fractalfract7120873","DOIUrl":null,"url":null,"abstract":"The dual-drive ball screw pair serves as a crucial element within the fixed gantry machine tool with cross-rail movement. When in service, the dual-drive ball screw pair experiences variations in axial load, impacting the contact load distribution of the ball screw pair. A calculation model for determining the axial load offset of the dual-drive ball screw pair is proposed to investigate the variation in axial load. The impact of the geometric error associated with the guide rail and the position of the slide are considered. This paper presents the contact load distribution model for the dual-drive ball screw pair. This study investigates the contact load and contact angle distribution of the dual-drive ball screw pair during the machine tool in service. Additionally, based on fractal theory, the stiffness models of individual micro-convex body and contact surfaces have been established. This study provides a comprehensive analysis of the contact stiffness of the ball screw pair, considering the influence of guide rail geometric error and slide position. In addition, the three-dimensional surface morphology of ball screw pair is obtained by experiments. This paper investigates the contact stiffness distribution of dual-drive ball screw pair during service.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"515 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Distribution Analysis and Contact Stiffness Prediction of the Dual-Drive Ball Screw Pair Considering Guide Rail Geometric Error and Slide Position\",\"authors\":\"Zhifeng Liu, Weiliang Zuo, Baobao Qi, C. Chen, Jinyan Guo, Dong Li, Shan Gao\",\"doi\":\"10.3390/fractalfract7120873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dual-drive ball screw pair serves as a crucial element within the fixed gantry machine tool with cross-rail movement. When in service, the dual-drive ball screw pair experiences variations in axial load, impacting the contact load distribution of the ball screw pair. A calculation model for determining the axial load offset of the dual-drive ball screw pair is proposed to investigate the variation in axial load. The impact of the geometric error associated with the guide rail and the position of the slide are considered. This paper presents the contact load distribution model for the dual-drive ball screw pair. This study investigates the contact load and contact angle distribution of the dual-drive ball screw pair during the machine tool in service. Additionally, based on fractal theory, the stiffness models of individual micro-convex body and contact surfaces have been established. This study provides a comprehensive analysis of the contact stiffness of the ball screw pair, considering the influence of guide rail geometric error and slide position. In addition, the three-dimensional surface morphology of ball screw pair is obtained by experiments. This paper investigates the contact stiffness distribution of dual-drive ball screw pair during service.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"515 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7120873\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120873","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Load Distribution Analysis and Contact Stiffness Prediction of the Dual-Drive Ball Screw Pair Considering Guide Rail Geometric Error and Slide Position
The dual-drive ball screw pair serves as a crucial element within the fixed gantry machine tool with cross-rail movement. When in service, the dual-drive ball screw pair experiences variations in axial load, impacting the contact load distribution of the ball screw pair. A calculation model for determining the axial load offset of the dual-drive ball screw pair is proposed to investigate the variation in axial load. The impact of the geometric error associated with the guide rail and the position of the slide are considered. This paper presents the contact load distribution model for the dual-drive ball screw pair. This study investigates the contact load and contact angle distribution of the dual-drive ball screw pair during the machine tool in service. Additionally, based on fractal theory, the stiffness models of individual micro-convex body and contact surfaces have been established. This study provides a comprehensive analysis of the contact stiffness of the ball screw pair, considering the influence of guide rail geometric error and slide position. In addition, the three-dimensional surface morphology of ball screw pair is obtained by experiments. This paper investigates the contact stiffness distribution of dual-drive ball screw pair during service.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.