YTSF 方程的解的多样性和动力学行为

Pub Date : 2023-12-10 DOI:10.58997/ejde.2023.82
Wei Chen
{"title":"YTSF 方程的解的多样性和动力学行为","authors":"Wei Chen","doi":"10.58997/ejde.2023.82","DOIUrl":null,"url":null,"abstract":"We construct non-homogeneous polynomial lump wave solutions of the Yu-Toda-Sasa-Fukuyama (YTSF) equation, based on a bilinear approach, enriching the formal diversity of lump waves. By studying the interaction between the lump solutions of the YTSF equation and the solitary wave solutions, we find a new aggregation effect and elastic collision effect. We obtain exact solutions, such as the solution of separated variables and periodic nonlinear wave solutions, by applying the Lie symmetry group method and the bilinear method. \nFor more information see https://ejde.math.txstate.edu/Volumes/2023/82/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variety of solutions and dynamical behavior for YTSF equations\",\"authors\":\"Wei Chen\",\"doi\":\"10.58997/ejde.2023.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct non-homogeneous polynomial lump wave solutions of the Yu-Toda-Sasa-Fukuyama (YTSF) equation, based on a bilinear approach, enriching the formal diversity of lump waves. By studying the interaction between the lump solutions of the YTSF equation and the solitary wave solutions, we find a new aggregation effect and elastic collision effect. We obtain exact solutions, such as the solution of separated variables and periodic nonlinear wave solutions, by applying the Lie symmetry group method and the bilinear method. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2023/82/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们基于双线性方法,构建了Yu-Toda-Sasa-Fukuyama(YTSF)方程的非均质多项式块波解,丰富了块波的形式多样性。通过研究 YTSF 方程的块波解与孤波解之间的相互作用,我们发现了新的聚集效应和弹性碰撞效应。通过应用李对称群法和双线性法,我们得到了精确解,如分离变量解和周期非线性波解。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2023/82/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Variety of solutions and dynamical behavior for YTSF equations
We construct non-homogeneous polynomial lump wave solutions of the Yu-Toda-Sasa-Fukuyama (YTSF) equation, based on a bilinear approach, enriching the formal diversity of lump waves. By studying the interaction between the lump solutions of the YTSF equation and the solitary wave solutions, we find a new aggregation effect and elastic collision effect. We obtain exact solutions, such as the solution of separated variables and periodic nonlinear wave solutions, by applying the Lie symmetry group method and the bilinear method. For more information see https://ejde.math.txstate.edu/Volumes/2023/82/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信