基于 GF(2n) 非生成二维混沌图的强密钥扩展算法

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dongya Xu, Hongjun Liu
{"title":"基于 GF(2n) 非生成二维混沌图的强密钥扩展算法","authors":"Dongya Xu, Hongjun Liu","doi":"10.1142/s0218127423501778","DOIUrl":null,"url":null,"abstract":"The strength of a cryptosystem relies on the security of its key expansion algorithm, which is an important component of a block cipher. However, numerous block ciphers exhibit the vulnerability of reversibility and serialization. Therefore, it is necessary to design an irreversible parallel key expansion algorithm to generate independent round keys. First, a 2D nondegenerate exponential chaotic map (2D-NECM) is constructed, and the results of the dynamic analysis show that the 2D-NECM possesses ergodicity and superior randomness within a large range of parameters. Then, an irreversible parallel key expansion algorithm is designed based on 2D-NECM and primitive polynomial over GF([Formula: see text]). By injecting random perturbation into the initial key, the algorithm can generate different round keys even if the same initial key is used. Simulation results indicate that the algorithm has high security performance. It effectively satisfies the requirements of irreversibility and parallelism, while ensuring the mutual independence of round keys.","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"143 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Strong Key Expansion Algorithm Based on Nondegenerate 2D Chaotic Map Over GF(2n)\",\"authors\":\"Dongya Xu, Hongjun Liu\",\"doi\":\"10.1142/s0218127423501778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strength of a cryptosystem relies on the security of its key expansion algorithm, which is an important component of a block cipher. However, numerous block ciphers exhibit the vulnerability of reversibility and serialization. Therefore, it is necessary to design an irreversible parallel key expansion algorithm to generate independent round keys. First, a 2D nondegenerate exponential chaotic map (2D-NECM) is constructed, and the results of the dynamic analysis show that the 2D-NECM possesses ergodicity and superior randomness within a large range of parameters. Then, an irreversible parallel key expansion algorithm is designed based on 2D-NECM and primitive polynomial over GF([Formula: see text]). By injecting random perturbation into the initial key, the algorithm can generate different round keys even if the same initial key is used. Simulation results indicate that the algorithm has high security performance. It effectively satisfies the requirements of irreversibility and parallelism, while ensuring the mutual independence of round keys.\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423501778\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127423501778","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

密码系统的强度取决于其密钥扩展算法的安全性,而密钥扩展算法是块状密码的重要组成部分。然而,许多块密码都存在可逆性和串行化的弱点。因此,有必要设计一种不可逆的并行密钥扩展算法来生成独立的轮密钥。首先,构建了二维非生成指数混沌图(2D-NECM),动态分析结果表明,2D-NECM 在较大参数范围内具有遍历性和优越的随机性。然后,基于 2D-NECM 和 GF([公式:见正文])上的基元多项式,设计了一种不可逆的并行密钥扩展算法。通过向初始密钥注入随机扰动,即使使用相同的初始密钥,该算法也能生成不同的轮密钥。仿真结果表明,该算法具有很高的安全性能。它有效地满足了不可逆性和并行性的要求,同时确保了轮密钥的相互独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Strong Key Expansion Algorithm Based on Nondegenerate 2D Chaotic Map Over GF(2n)
The strength of a cryptosystem relies on the security of its key expansion algorithm, which is an important component of a block cipher. However, numerous block ciphers exhibit the vulnerability of reversibility and serialization. Therefore, it is necessary to design an irreversible parallel key expansion algorithm to generate independent round keys. First, a 2D nondegenerate exponential chaotic map (2D-NECM) is constructed, and the results of the dynamic analysis show that the 2D-NECM possesses ergodicity and superior randomness within a large range of parameters. Then, an irreversible parallel key expansion algorithm is designed based on 2D-NECM and primitive polynomial over GF([Formula: see text]). By injecting random perturbation into the initial key, the algorithm can generate different round keys even if the same initial key is used. Simulation results indicate that the algorithm has high security performance. It effectively satisfies the requirements of irreversibility and parallelism, while ensuring the mutual independence of round keys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信