{"title":"基于准牛顿矩阵因式分解的推荐模型","authors":"Shiyun Shao, Yunni Xia, Kaifeng Bai, Xiaoxin Zhou","doi":"10.4018/ijwsr.334703","DOIUrl":null,"url":null,"abstract":"Solving large-scale non-convex optimization problems is the fundamental challenge in the development of matrix factorization (MF)-based recommender systems. Unfortunately, employing conventional first-order optimization approaches proves to be an arduous endeavor since their curves are very complex. The exploration of second-order optimization methods holds great promise. They are more powerful because they consider the curvature of the optimization problem, which is captured by the second-order derivatives of the objective function. However, a significant obstacle arises when directly applying Hessian-based approaches: their computational demands are often prohibitively high. Therefore, the authors propose AdaGO, a novel quasi-Newton method-based optimizer to meet the specific requirements of large-scale non-convex optimization problems. AdaGO can strike a balance between computational efficiency and optimization performance. In the comparative studies with state-of-the-art MF-based models, AdaGO demonstrates its superiority by achieving higher prediction accuracy.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"19 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quasi-Newton Matrix Factorization-Based Model for Recommendation\",\"authors\":\"Shiyun Shao, Yunni Xia, Kaifeng Bai, Xiaoxin Zhou\",\"doi\":\"10.4018/ijwsr.334703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving large-scale non-convex optimization problems is the fundamental challenge in the development of matrix factorization (MF)-based recommender systems. Unfortunately, employing conventional first-order optimization approaches proves to be an arduous endeavor since their curves are very complex. The exploration of second-order optimization methods holds great promise. They are more powerful because they consider the curvature of the optimization problem, which is captured by the second-order derivatives of the objective function. However, a significant obstacle arises when directly applying Hessian-based approaches: their computational demands are often prohibitively high. Therefore, the authors propose AdaGO, a novel quasi-Newton method-based optimizer to meet the specific requirements of large-scale non-convex optimization problems. AdaGO can strike a balance between computational efficiency and optimization performance. In the comparative studies with state-of-the-art MF-based models, AdaGO demonstrates its superiority by achieving higher prediction accuracy.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.334703\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.334703","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Quasi-Newton Matrix Factorization-Based Model for Recommendation
Solving large-scale non-convex optimization problems is the fundamental challenge in the development of matrix factorization (MF)-based recommender systems. Unfortunately, employing conventional first-order optimization approaches proves to be an arduous endeavor since their curves are very complex. The exploration of second-order optimization methods holds great promise. They are more powerful because they consider the curvature of the optimization problem, which is captured by the second-order derivatives of the objective function. However, a significant obstacle arises when directly applying Hessian-based approaches: their computational demands are often prohibitively high. Therefore, the authors propose AdaGO, a novel quasi-Newton method-based optimizer to meet the specific requirements of large-scale non-convex optimization problems. AdaGO can strike a balance between computational efficiency and optimization performance. In the comparative studies with state-of-the-art MF-based models, AdaGO demonstrates its superiority by achieving higher prediction accuracy.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.