粒子群优化-人工神经元网络算法与响应面法相结合,优化 2017A 合金铣削过程中的能耗和成本

Kamel Bousnina, Anis Hamza, Noureddine Ben Yahia
{"title":"粒子群优化-人工神经元网络算法与响应面法相结合,优化 2017A 合金铣削过程中的能耗和成本","authors":"Kamel Bousnina, Anis Hamza, Noureddine Ben Yahia","doi":"10.1177/01445987231217134","DOIUrl":null,"url":null,"abstract":"This research aims to predict the cost and energy consumption associated with pocket and groove machining using the hybrid particle swarm optimization-artificial neurons network (PSO-ANN) algorithm and the response surface method (RSM). A parametric study was conducted to determine the best predictions by adjusting the swarm population size (pop) and the number of neurons (n) in the hidden layer. The results showed that machining strategies and sequences can have a significant impact on energy consumption, reaching a difference of 99.25% between the minimum and maximum values. The cost ( Ctot) and energy consumption ( Etot) values with the PSO-ANN algorithm increased significantly by 99.99% and 92.41%, respectively, compared to the RSM model. The minimum mean square error values for Etot and Ctot with the PSO-ANN models are 3.0499 × 10−5 and 4.6296 × 10−10, respectively. This study highlights the potential of the hybrid PSO-ANN algorithm for multi-criteria prediction and highlights the potential for improved machining of 2017A alloy.","PeriodicalId":444405,"journal":{"name":"Energy Exploration & Exploitation","volume":"44 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combination of the particle swarm optimization-artificial neurons network algorithm and response surface method to optimize energy consumption and cost during milling of the 2017A alloy\",\"authors\":\"Kamel Bousnina, Anis Hamza, Noureddine Ben Yahia\",\"doi\":\"10.1177/01445987231217134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to predict the cost and energy consumption associated with pocket and groove machining using the hybrid particle swarm optimization-artificial neurons network (PSO-ANN) algorithm and the response surface method (RSM). A parametric study was conducted to determine the best predictions by adjusting the swarm population size (pop) and the number of neurons (n) in the hidden layer. The results showed that machining strategies and sequences can have a significant impact on energy consumption, reaching a difference of 99.25% between the minimum and maximum values. The cost ( Ctot) and energy consumption ( Etot) values with the PSO-ANN algorithm increased significantly by 99.99% and 92.41%, respectively, compared to the RSM model. The minimum mean square error values for Etot and Ctot with the PSO-ANN models are 3.0499 × 10−5 and 4.6296 × 10−10, respectively. This study highlights the potential of the hybrid PSO-ANN algorithm for multi-criteria prediction and highlights the potential for improved machining of 2017A alloy.\",\"PeriodicalId\":444405,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":\"44 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231217134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231217134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用粒子群优化-人工神经元网络(PSO-ANN)混合算法和响应面法(RSM)预测与凹槽加工相关的成本和能耗。通过调整粒子群数量(pop)和隐层神经元数量(n),进行了参数研究,以确定最佳预测结果。结果表明,加工策略和顺序对能耗有显著影响,最小值和最大值之间的差异达到 99.25%。与 RSM 模型相比,PSO-ANN 算法的成本(Ctot)和能耗(Etot)值分别显著增加了 99.99% 和 92.41%。采用 PSO-ANN 模型的 Etot 和 Ctot 的最小均方误差值分别为 3.0499 × 10-5 和 4.6296 × 10-10。这项研究凸显了 PSO-ANN 混合算法在多标准预测方面的潜力,并强调了改进 2017A 合金加工的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combination of the particle swarm optimization-artificial neurons network algorithm and response surface method to optimize energy consumption and cost during milling of the 2017A alloy
This research aims to predict the cost and energy consumption associated with pocket and groove machining using the hybrid particle swarm optimization-artificial neurons network (PSO-ANN) algorithm and the response surface method (RSM). A parametric study was conducted to determine the best predictions by adjusting the swarm population size (pop) and the number of neurons (n) in the hidden layer. The results showed that machining strategies and sequences can have a significant impact on energy consumption, reaching a difference of 99.25% between the minimum and maximum values. The cost ( Ctot) and energy consumption ( Etot) values with the PSO-ANN algorithm increased significantly by 99.99% and 92.41%, respectively, compared to the RSM model. The minimum mean square error values for Etot and Ctot with the PSO-ANN models are 3.0499 × 10−5 and 4.6296 × 10−10, respectively. This study highlights the potential of the hybrid PSO-ANN algorithm for multi-criteria prediction and highlights the potential for improved machining of 2017A alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信