{"title":"论几乎无处不在的 K 正集值映射","authors":"Eliza Jabłońska","doi":"10.2478/amsil-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \\ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there exists a unique up to K K-additive set-valued map G : X → 2Y \\{∅} such that F = G ℐ1-almost everywhere in X. Our considerations refers to the well known de Bruijn’s result [1].","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"81 3‐4","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Almost Everywhere K-Additive Set-Valued Maps\",\"authors\":\"Eliza Jabłońska\",\"doi\":\"10.2478/amsil-2023-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \\\\ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there exists a unique up to K K-additive set-valued map G : X → 2Y \\\\{∅} such that F = G ℐ1-almost everywhere in X. Our considerations refers to the well known de Bruijn’s result [1].\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"81 3‐4\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 假设 X 是一个阿贝尔群,Y 是一个交换单元,K ⊂Y 是一个子单元,F : X → 2Y \ {∅} 是一个集合值映射。在对 X 中的ℐ1 理想和 X2 中的ℐ2 理想的一些额外假设下,我们证明如果 F 是ℐ2-几乎无处不在的 K-additive 的,那么存在一个唯一的直到 K-additive 的带集合值的映射 G : X → 2Y \{∅} ,使得 F = G ℐ1- 几乎无处不在 X 中。
Abstract Let X be an Abelian group, Y be a commutative monoid, K ⊂Y be a submonoid and F : X → 2Y \ {∅} be a set-valued map. Under some additional assumptions on ideals ℐ1 in X and ℐ2 in X2, we prove that if F is ℐ2-almost everywhere K-additive, then there exists a unique up to K K-additive set-valued map G : X → 2Y \{∅} such that F = G ℐ1-almost everywhere in X. Our considerations refers to the well known de Bruijn’s result [1].