{"title":"等离子体光谱收集装置对 LIBS 光谱强度影响的研究","authors":"Xiaomei Lin, Yanjie Dong, Jingjun Lin, Yutao Huang, Jiangfei Yang, Xingyu Yue, Zhuojia Zhang, Xinyang Duan","doi":"10.1088/2058-6272/ad15e1","DOIUrl":null,"url":null,"abstract":"\n Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited,when collecting spectral information. To overcome this limitation, this study presents a novel method for acquiring plasma spectral information from various spatial directions. A parabolic-shaped plasma spectral collection device(PSCD) is employed to effectively collect more spectral information into the spectrometer, thereby enhancing the overall spectral intensity. The research objects in this study were soil samples containing different concentrations of heavy metals Pb, Cr, and Cd. The results indicate that the PSCD significantly enhances the spectral signal, with an enhancement rate of up to 45%. Moreover, the signal-to-noise ratio also increases by as much as 36%. Simultaneously, when compared to the absence of a device, it is found that there is no significant variation in plasma temperature when the PSCD is utilized. This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity. Consequently, a concentration-spectral intensity relationship curve is established under the PSCD. The results revealed that the linear fitting R2 for Pb, Cr, and Cd increased by 0.011, 0.001, and 0.054, respectively. Additionally, the limit of detection (LOD) decreased by 0.361 ppm, 0.901 ppm, and 0.602 ppm, respectively. These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration. Hence, the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A research on the effect of plasma spectrum collection device on LIBS spectral intensity\",\"authors\":\"Xiaomei Lin, Yanjie Dong, Jingjun Lin, Yutao Huang, Jiangfei Yang, Xingyu Yue, Zhuojia Zhang, Xinyang Duan\",\"doi\":\"10.1088/2058-6272/ad15e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited,when collecting spectral information. To overcome this limitation, this study presents a novel method for acquiring plasma spectral information from various spatial directions. A parabolic-shaped plasma spectral collection device(PSCD) is employed to effectively collect more spectral information into the spectrometer, thereby enhancing the overall spectral intensity. The research objects in this study were soil samples containing different concentrations of heavy metals Pb, Cr, and Cd. The results indicate that the PSCD significantly enhances the spectral signal, with an enhancement rate of up to 45%. Moreover, the signal-to-noise ratio also increases by as much as 36%. Simultaneously, when compared to the absence of a device, it is found that there is no significant variation in plasma temperature when the PSCD is utilized. This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity. Consequently, a concentration-spectral intensity relationship curve is established under the PSCD. The results revealed that the linear fitting R2 for Pb, Cr, and Cd increased by 0.011, 0.001, and 0.054, respectively. Additionally, the limit of detection (LOD) decreased by 0.361 ppm, 0.901 ppm, and 0.602 ppm, respectively. These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration. Hence, the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad15e1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad15e1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A research on the effect of plasma spectrum collection device on LIBS spectral intensity
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited,when collecting spectral information. To overcome this limitation, this study presents a novel method for acquiring plasma spectral information from various spatial directions. A parabolic-shaped plasma spectral collection device(PSCD) is employed to effectively collect more spectral information into the spectrometer, thereby enhancing the overall spectral intensity. The research objects in this study were soil samples containing different concentrations of heavy metals Pb, Cr, and Cd. The results indicate that the PSCD significantly enhances the spectral signal, with an enhancement rate of up to 45%. Moreover, the signal-to-noise ratio also increases by as much as 36%. Simultaneously, when compared to the absence of a device, it is found that there is no significant variation in plasma temperature when the PSCD is utilized. This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity. Consequently, a concentration-spectral intensity relationship curve is established under the PSCD. The results revealed that the linear fitting R2 for Pb, Cr, and Cd increased by 0.011, 0.001, and 0.054, respectively. Additionally, the limit of detection (LOD) decreased by 0.361 ppm, 0.901 ppm, and 0.602 ppm, respectively. These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration. Hence, the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.