{"title":"抽样问题的生物启发多用途方法","authors":"Anton Tolstikhin","doi":"10.3390/computation11120254","DOIUrl":null,"url":null,"abstract":"Currently, the sampling problem has gained wide popularity in the field of autonomous mobile agent control due to the wide range of practical and fundamental problems described with its framework. This paper considers a combined decentralized control strategy that incorporates both elements of biologically inspired and gradient-based approaches. Its key feature is multitasking, consisting in the possibility of solving several tasks in parallel included in the sampling problem: localization and monitoring of several sources and restoration of the given level line boundaries.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Multipurpose Approach to the Sampling Problem\",\"authors\":\"Anton Tolstikhin\",\"doi\":\"10.3390/computation11120254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the sampling problem has gained wide popularity in the field of autonomous mobile agent control due to the wide range of practical and fundamental problems described with its framework. This paper considers a combined decentralized control strategy that incorporates both elements of biologically inspired and gradient-based approaches. Its key feature is multitasking, consisting in the possibility of solving several tasks in parallel included in the sampling problem: localization and monitoring of several sources and restoration of the given level line boundaries.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11120254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bioinspired Multipurpose Approach to the Sampling Problem
Currently, the sampling problem has gained wide popularity in the field of autonomous mobile agent control due to the wide range of practical and fundamental problems described with its framework. This paper considers a combined decentralized control strategy that incorporates both elements of biologically inspired and gradient-based approaches. Its key feature is multitasking, consisting in the possibility of solving several tasks in parallel included in the sampling problem: localization and monitoring of several sources and restoration of the given level line boundaries.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.