用纳米氧化镁材料处理粘性土壤的行为

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zeena Al-Khazzaz, A. Aldaood, Muwafaq Awad, Mohammed Faris
{"title":"用纳米氧化镁材料处理粘性土壤的行为","authors":"Zeena Al-Khazzaz, A. Aldaood, Muwafaq Awad, Mohammed Faris","doi":"10.28927/sr.2024.014822","DOIUrl":null,"url":null,"abstract":"Clayey soils are spread in many countries and require significant improvement. Recently, nanomaterial have been entered to the geotechnical research as a treatment material. Current study utilized magnesium oxide (MgO) as an additive to enhance swelling potential, compressibility characteristics, and index properties of clayey soil from Mosul city using different content of nano-MgO and under varies curing periods. The results showed that the free swell and swell pressure of the soil specimens have been reduced by 25%, and 19%, respectively for 0.25, and 0.75% content of nano material under 3 days of curing time at 25C. Results also showed that the compressibility characteristic represented by the compression index parameter has been reduced by 20.3% for 0.75% of nano-MgO material. Moreover, the soil plasticity index exhibited a maximum increase at 0.75% of nano content. Moreover, results showed that the pH value increased while the electrical conductivity (EC) decreased with the nano-MgO content. To evaluate the curing time effect, specimens were cured for varies curing time under curing temperature of 25 ºC. Then, the free swell, swell pressure, compression index, and Atterberg limits were measured. The results revealed that the free swell and swell pressure for both untreated and treated specimens were reduced during different periods of curing time. Furthermore, the compression index of treated soil was reduced by approximately half for curing time of 28 days. In sum, the swelling and consolidation reduction with curing brought significant improvement and promising results for the treated samples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of clayey soil treated with nano magnesium oxide material\",\"authors\":\"Zeena Al-Khazzaz, A. Aldaood, Muwafaq Awad, Mohammed Faris\",\"doi\":\"10.28927/sr.2024.014822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clayey soils are spread in many countries and require significant improvement. Recently, nanomaterial have been entered to the geotechnical research as a treatment material. Current study utilized magnesium oxide (MgO) as an additive to enhance swelling potential, compressibility characteristics, and index properties of clayey soil from Mosul city using different content of nano-MgO and under varies curing periods. The results showed that the free swell and swell pressure of the soil specimens have been reduced by 25%, and 19%, respectively for 0.25, and 0.75% content of nano material under 3 days of curing time at 25C. Results also showed that the compressibility characteristic represented by the compression index parameter has been reduced by 20.3% for 0.75% of nano-MgO material. Moreover, the soil plasticity index exhibited a maximum increase at 0.75% of nano content. Moreover, results showed that the pH value increased while the electrical conductivity (EC) decreased with the nano-MgO content. To evaluate the curing time effect, specimens were cured for varies curing time under curing temperature of 25 ºC. Then, the free swell, swell pressure, compression index, and Atterberg limits were measured. The results revealed that the free swell and swell pressure for both untreated and treated specimens were reduced during different periods of curing time. Furthermore, the compression index of treated soil was reduced by approximately half for curing time of 28 days. In sum, the swelling and consolidation reduction with curing brought significant improvement and promising results for the treated samples.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2024.014822\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2024.014822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

粘土在许多国家都很普遍,需要大力改善。最近,纳米材料作为一种处理材料进入了岩土工程研究领域。目前的研究利用氧化镁(MgO)作为添加剂,使用不同含量的纳米氧化镁,在不同的固化期,提高摩苏尔市粘性土壤的膨胀潜力、压缩特性和指数特性。结果表明,在 25C 温度下固化 3 天后,纳米材料的含量分别为 0.25% 和 0.75% 时,土壤试样的自由膨胀率和膨胀压力分别降低了 25% 和 19%。结果还显示,0.75% 的纳米氧化镁材料的压缩指数参数所代表的压缩特性降低了 20.3%。此外,纳米含量为 0.75% 时,土壤塑性指数的增幅最大。此外,结果表明,随着纳米氧化镁含量的增加,pH 值上升,而导电率(EC)下降。为了评估固化时间的影响,试样在 25 ºC 的固化温度下固化了不同的固化时间。然后测量了自由膨胀率、膨胀压力、压缩指数和阿特伯格极限。结果表明,在不同的固化时间段内,未处理和处理过的试样的自由膨胀率和膨胀压力都有所降低。此外,在 28 天的固化时间内,经处理土壤的压缩指数降低了约一半。总之,固化过程中膨胀和固结的减少为处理过的样本带来了显著的改善和可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of clayey soil treated with nano magnesium oxide material
Clayey soils are spread in many countries and require significant improvement. Recently, nanomaterial have been entered to the geotechnical research as a treatment material. Current study utilized magnesium oxide (MgO) as an additive to enhance swelling potential, compressibility characteristics, and index properties of clayey soil from Mosul city using different content of nano-MgO and under varies curing periods. The results showed that the free swell and swell pressure of the soil specimens have been reduced by 25%, and 19%, respectively for 0.25, and 0.75% content of nano material under 3 days of curing time at 25C. Results also showed that the compressibility characteristic represented by the compression index parameter has been reduced by 20.3% for 0.75% of nano-MgO material. Moreover, the soil plasticity index exhibited a maximum increase at 0.75% of nano content. Moreover, results showed that the pH value increased while the electrical conductivity (EC) decreased with the nano-MgO content. To evaluate the curing time effect, specimens were cured for varies curing time under curing temperature of 25 ºC. Then, the free swell, swell pressure, compression index, and Atterberg limits were measured. The results revealed that the free swell and swell pressure for both untreated and treated specimens were reduced during different periods of curing time. Furthermore, the compression index of treated soil was reduced by approximately half for curing time of 28 days. In sum, the swelling and consolidation reduction with curing brought significant improvement and promising results for the treated samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信