{"title":"遥感图像分类的高效知识提炼:基于 CNN 的方法","authors":"Huaxiang Song, Chai Wei, Zhou Yong","doi":"10.1108/ijwis-10-2023-0192","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe paper aims to tackle the classification of Remote Sensing Images (RSIs), which presents a significant challenge for computer algorithms due to the inherent characteristics of clustered ground objects and noisy backgrounds. Recent research typically leverages larger volume models to achieve advanced performance. However, the operating environments of remote sensing commonly cannot provide unconstrained computational and storage resources. It requires lightweight algorithms with exceptional generalization capabilities.\n\n\nDesign/methodology/approach\nThis study introduces an efficient knowledge distillation (KD) method to build a lightweight yet precise convolutional neural network (CNN) classifier. This method also aims to substantially decrease the training time expenses commonly linked with traditional KD techniques. This approach entails extensive alterations to both the model training framework and the distillation process, each tailored to the unique characteristics of RSIs. In particular, this study establishes a robust ensemble teacher by independently training two CNN models using a customized, efficient training algorithm. Following this, this study modifies a KD loss function to mitigate the suppression of non-target category predictions, which are essential for capturing the inter- and intra-similarity of RSIs.\n\n\nFindings\nThis study validated the student model, termed KD-enhanced network (KDE-Net), obtained through the KD process on three benchmark RSI data sets. The KDE-Net surpasses 42 other state-of-the-art methods in the literature published from 2020 to 2023. Compared to the top-ranked method’s performance on the challenging NWPU45 data set, KDE-Net demonstrated a noticeable 0.4% increase in overall accuracy with a significant 88% reduction in parameters. Meanwhile, this study’s reformed KD framework significantly enhances the knowledge transfer speed by at least three times.\n\n\nOriginality/value\nThis study illustrates that the logit-based KD technique can effectively develop lightweight CNN classifiers for RSI classification without substantial sacrifices in computation and storage costs. Compared to neural architecture search or other methods aiming to provide lightweight solutions, this study’s KDE-Net, based on the inherent characteristics of RSIs, is currently more efficient in constructing accurate yet lightweight classifiers for RSI classification.\n","PeriodicalId":44153,"journal":{"name":"International Journal of Web Information Systems","volume":"2 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient knowledge distillation for remote sensing image classification: a CNN-based approach\",\"authors\":\"Huaxiang Song, Chai Wei, Zhou Yong\",\"doi\":\"10.1108/ijwis-10-2023-0192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe paper aims to tackle the classification of Remote Sensing Images (RSIs), which presents a significant challenge for computer algorithms due to the inherent characteristics of clustered ground objects and noisy backgrounds. Recent research typically leverages larger volume models to achieve advanced performance. However, the operating environments of remote sensing commonly cannot provide unconstrained computational and storage resources. It requires lightweight algorithms with exceptional generalization capabilities.\\n\\n\\nDesign/methodology/approach\\nThis study introduces an efficient knowledge distillation (KD) method to build a lightweight yet precise convolutional neural network (CNN) classifier. This method also aims to substantially decrease the training time expenses commonly linked with traditional KD techniques. This approach entails extensive alterations to both the model training framework and the distillation process, each tailored to the unique characteristics of RSIs. In particular, this study establishes a robust ensemble teacher by independently training two CNN models using a customized, efficient training algorithm. Following this, this study modifies a KD loss function to mitigate the suppression of non-target category predictions, which are essential for capturing the inter- and intra-similarity of RSIs.\\n\\n\\nFindings\\nThis study validated the student model, termed KD-enhanced network (KDE-Net), obtained through the KD process on three benchmark RSI data sets. The KDE-Net surpasses 42 other state-of-the-art methods in the literature published from 2020 to 2023. Compared to the top-ranked method’s performance on the challenging NWPU45 data set, KDE-Net demonstrated a noticeable 0.4% increase in overall accuracy with a significant 88% reduction in parameters. Meanwhile, this study’s reformed KD framework significantly enhances the knowledge transfer speed by at least three times.\\n\\n\\nOriginality/value\\nThis study illustrates that the logit-based KD technique can effectively develop lightweight CNN classifiers for RSI classification without substantial sacrifices in computation and storage costs. Compared to neural architecture search or other methods aiming to provide lightweight solutions, this study’s KDE-Net, based on the inherent characteristics of RSIs, is currently more efficient in constructing accurate yet lightweight classifiers for RSI classification.\\n\",\"PeriodicalId\":44153,\"journal\":{\"name\":\"International Journal of Web Information Systems\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijwis-10-2023-0192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-10-2023-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Efficient knowledge distillation for remote sensing image classification: a CNN-based approach
Purpose
The paper aims to tackle the classification of Remote Sensing Images (RSIs), which presents a significant challenge for computer algorithms due to the inherent characteristics of clustered ground objects and noisy backgrounds. Recent research typically leverages larger volume models to achieve advanced performance. However, the operating environments of remote sensing commonly cannot provide unconstrained computational and storage resources. It requires lightweight algorithms with exceptional generalization capabilities.
Design/methodology/approach
This study introduces an efficient knowledge distillation (KD) method to build a lightweight yet precise convolutional neural network (CNN) classifier. This method also aims to substantially decrease the training time expenses commonly linked with traditional KD techniques. This approach entails extensive alterations to both the model training framework and the distillation process, each tailored to the unique characteristics of RSIs. In particular, this study establishes a robust ensemble teacher by independently training two CNN models using a customized, efficient training algorithm. Following this, this study modifies a KD loss function to mitigate the suppression of non-target category predictions, which are essential for capturing the inter- and intra-similarity of RSIs.
Findings
This study validated the student model, termed KD-enhanced network (KDE-Net), obtained through the KD process on three benchmark RSI data sets. The KDE-Net surpasses 42 other state-of-the-art methods in the literature published from 2020 to 2023. Compared to the top-ranked method’s performance on the challenging NWPU45 data set, KDE-Net demonstrated a noticeable 0.4% increase in overall accuracy with a significant 88% reduction in parameters. Meanwhile, this study’s reformed KD framework significantly enhances the knowledge transfer speed by at least three times.
Originality/value
This study illustrates that the logit-based KD technique can effectively develop lightweight CNN classifiers for RSI classification without substantial sacrifices in computation and storage costs. Compared to neural architecture search or other methods aiming to provide lightweight solutions, this study’s KDE-Net, based on the inherent characteristics of RSIs, is currently more efficient in constructing accurate yet lightweight classifiers for RSI classification.
期刊介绍:
The Global Information Infrastructure is a daily reality. In spite of the many applications in all domains of our societies: e-business, e-commerce, e-learning, e-science, and e-government, for instance, and in spite of the tremendous advances by engineers and scientists, the seamless development of Web information systems and services remains a major challenge. The journal examines how current shared vision for the future is one of semantically-rich information and service oriented architecture for global information systems. This vision is at the convergence of progress in technologies such as XML, Web services, RDF, OWL, of multimedia, multimodal, and multilingual information retrieval, and of distributed, mobile and ubiquitous computing. Topicality While the International Journal of Web Information Systems covers a broad range of topics, the journal welcomes papers that provide a perspective on all aspects of Web information systems: Web semantics and Web dynamics, Web mining and searching, Web databases and Web data integration, Web-based commerce and e-business, Web collaboration and distributed computing, Internet computing and networks, performance of Web applications, and Web multimedia services and Web-based education.