{"title":"用户端灵活资源的信息-物理-社会融合特征参数的确定与建模","authors":"Z. Dou, Chunyan Zhang, Juntao Wu, Xuan Wen","doi":"10.3233/jcm-237011","DOIUrl":null,"url":null,"abstract":"The use of flexible resource information on the user side helps to increase system efficiency. Power system power variation becomes more pronounced with the access to renewable resources. Therefore, the study proposes a parameter identification and modeling method for the physical and social integration characteristics of flexible resource information on the user side. Taking the user’s air conditioning load as the object, the thermal dynamic model of the air conditioning building is constructed using equivalent thermal parameters, and the variable frequency air conditioning load is embedded in the battery model. The model parameter identification is carried out using high-dimensional model expression technology. According to the experimental data, in options 2 and 3, the system operator makes power purchases based on the storage status of the lithium battery or virtual battery, increasing the number of power purchases when the price of electricity is low and decreasing the number of power purchases when the price of electricity is high. This effectively reduces the system operator’s electricity costs. The error of multiple linear regression modelling varies widely, with relative errors up to 0.75 and an average relative error of 15.1%. The relative error of modelling based on the high-dimensional model expression technique is in the range of 0 to 0.2, with an average relative error of 5.5%. The results show that compared with multiple linear regression models, high-dimensional model representation technology has higher modeling accuracy and can accurately identify the parameters of the air conditioning load aggregation model, solving the problem of difficult parameter calculation in the practical application of the air conditioning load aggregation model, and providing technical support for power system regulation.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"19 18","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources\",\"authors\":\"Z. Dou, Chunyan Zhang, Juntao Wu, Xuan Wen\",\"doi\":\"10.3233/jcm-237011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of flexible resource information on the user side helps to increase system efficiency. Power system power variation becomes more pronounced with the access to renewable resources. Therefore, the study proposes a parameter identification and modeling method for the physical and social integration characteristics of flexible resource information on the user side. Taking the user’s air conditioning load as the object, the thermal dynamic model of the air conditioning building is constructed using equivalent thermal parameters, and the variable frequency air conditioning load is embedded in the battery model. The model parameter identification is carried out using high-dimensional model expression technology. According to the experimental data, in options 2 and 3, the system operator makes power purchases based on the storage status of the lithium battery or virtual battery, increasing the number of power purchases when the price of electricity is low and decreasing the number of power purchases when the price of electricity is high. This effectively reduces the system operator’s electricity costs. The error of multiple linear regression modelling varies widely, with relative errors up to 0.75 and an average relative error of 15.1%. The relative error of modelling based on the high-dimensional model expression technique is in the range of 0 to 0.2, with an average relative error of 5.5%. The results show that compared with multiple linear regression models, high-dimensional model representation technology has higher modeling accuracy and can accurately identify the parameters of the air conditioning load aggregation model, solving the problem of difficult parameter calculation in the practical application of the air conditioning load aggregation model, and providing technical support for power system regulation.\",\"PeriodicalId\":45004,\"journal\":{\"name\":\"Journal of Computational Methods in Sciences and Engineering\",\"volume\":\"19 18\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Methods in Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-237011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-237011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification and modelling of parameters for the information-physical-social convergence characteristics of user-side flexible resources
The use of flexible resource information on the user side helps to increase system efficiency. Power system power variation becomes more pronounced with the access to renewable resources. Therefore, the study proposes a parameter identification and modeling method for the physical and social integration characteristics of flexible resource information on the user side. Taking the user’s air conditioning load as the object, the thermal dynamic model of the air conditioning building is constructed using equivalent thermal parameters, and the variable frequency air conditioning load is embedded in the battery model. The model parameter identification is carried out using high-dimensional model expression technology. According to the experimental data, in options 2 and 3, the system operator makes power purchases based on the storage status of the lithium battery or virtual battery, increasing the number of power purchases when the price of electricity is low and decreasing the number of power purchases when the price of electricity is high. This effectively reduces the system operator’s electricity costs. The error of multiple linear regression modelling varies widely, with relative errors up to 0.75 and an average relative error of 15.1%. The relative error of modelling based on the high-dimensional model expression technique is in the range of 0 to 0.2, with an average relative error of 5.5%. The results show that compared with multiple linear regression models, high-dimensional model representation technology has higher modeling accuracy and can accurately identify the parameters of the air conditioning load aggregation model, solving the problem of difficult parameter calculation in the practical application of the air conditioning load aggregation model, and providing technical support for power system regulation.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.