{"title":"用于 5G 智能手机通信的紧凑型 16 端口分形槽天线阵列","authors":"N. Khan, M. Bilal, R. Ali, A. Khan","doi":"10.7716/aem.v12i4.2123","DOIUrl":null,"url":null,"abstract":"In this manuscript, a 16-port compact multi-antenna array for fifth generation (5G) communications is presented. The proposed antenna offers high data rate communication, by using MIMO (multiple-input-multiple-output) wireless technology. Efficient bandwidth enhancement techniques are used to achieve wider bandwidth response i.e., 3.4-3.8 GHz within sub-6GHz. This system is realized over low-cost FR-4 laminate having dimensions of 64mm × 131mm. The fractal shape slotted radiators and open-ended square ring (OESR) isolating structures achieves at least 25dB isolations among antenna pairs while maintaining wideband response. The optimum isolation, low-cost design profile, matched scattering parameters without compromising compactness and acceptable specific absorption rate (SAR) makes this system a suitable candidate for 5G smart phone communications.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact 16-Port Fractal Shaped Slot Antenna Array for 5G Smart Phone Communications\",\"authors\":\"N. Khan, M. Bilal, R. Ali, A. Khan\",\"doi\":\"10.7716/aem.v12i4.2123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, a 16-port compact multi-antenna array for fifth generation (5G) communications is presented. The proposed antenna offers high data rate communication, by using MIMO (multiple-input-multiple-output) wireless technology. Efficient bandwidth enhancement techniques are used to achieve wider bandwidth response i.e., 3.4-3.8 GHz within sub-6GHz. This system is realized over low-cost FR-4 laminate having dimensions of 64mm × 131mm. The fractal shape slotted radiators and open-ended square ring (OESR) isolating structures achieves at least 25dB isolations among antenna pairs while maintaining wideband response. The optimum isolation, low-cost design profile, matched scattering parameters without compromising compactness and acceptable specific absorption rate (SAR) makes this system a suitable candidate for 5G smart phone communications.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v12i4.2123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v12i4.2123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Compact 16-Port Fractal Shaped Slot Antenna Array for 5G Smart Phone Communications
In this manuscript, a 16-port compact multi-antenna array for fifth generation (5G) communications is presented. The proposed antenna offers high data rate communication, by using MIMO (multiple-input-multiple-output) wireless technology. Efficient bandwidth enhancement techniques are used to achieve wider bandwidth response i.e., 3.4-3.8 GHz within sub-6GHz. This system is realized over low-cost FR-4 laminate having dimensions of 64mm × 131mm. The fractal shape slotted radiators and open-ended square ring (OESR) isolating structures achieves at least 25dB isolations among antenna pairs while maintaining wideband response. The optimum isolation, low-cost design profile, matched scattering parameters without compromising compactness and acceptable specific absorption rate (SAR) makes this system a suitable candidate for 5G smart phone communications.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.