Yujing Li, Wenjuan Xu, Jingjing Liu, E. Zhang, Hejie Li, Yan Zhang, Jing Zhang, Chunsheng Li, Xiaoguang Zhang
{"title":"利用 Evanescent Wave 荧光免疫传感器快速灵敏地现场检测食品中的氟虫腈","authors":"Yujing Li, Wenjuan Xu, Jingjing Liu, E. Zhang, Hejie Li, Yan Zhang, Jing Zhang, Chunsheng Li, Xiaoguang Zhang","doi":"10.3390/chemosensors11120578","DOIUrl":null,"url":null,"abstract":"Fipronil (FIP), a broad-spectrum phenylpyrazole insecticide, is highly toxic and threatens human health and ecological balance. Developing convenient, rapid, portable analytical technology for on-site and high-frequency testing of FIP is essential to reduce its damage. Herein, a monoclonal antibody (Clone F-3F6) against FIP, with high affinity and specificity, was produced using a novel immunogen, FIP-BSA, which was simply and directly synthesized by conjugating FIP with bovine serum albumin (BSA). Among the previously reported antibodies, F-3F6 acts more specifically against FIP. The FIP metabolites fipronil desulfinyl, fipronil sulfide, and fipronil sulfone showed lower cross-reactivity, and other pesticides were not recognized. To achieve high-frequency and on-site measurements of FIP, an evanescent wave fluorescence biosensor was built by integrating evanescent wave fluorescence technology, a functionalized fiber bioprobe, and a fluorescence-labeled F-3F6 antibody. The detection limit of FIP was 0.032 μg/L. The detection results of real milk and water samples showed that all the coefficients of variation were less than 10%, and the recovery ranged from 90 to 120%. The high reusability and stability of functionalized fiber bioprobe enables the accurate, cost-effective, high-frequency, and facile quantitative detection of FIP. This highly specific and reliable evanescent wave fluorescence biosensor will be well suited to the sensitive and high-frequency on-site analysis of only FIP in food.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"12 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor\",\"authors\":\"Yujing Li, Wenjuan Xu, Jingjing Liu, E. Zhang, Hejie Li, Yan Zhang, Jing Zhang, Chunsheng Li, Xiaoguang Zhang\",\"doi\":\"10.3390/chemosensors11120578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fipronil (FIP), a broad-spectrum phenylpyrazole insecticide, is highly toxic and threatens human health and ecological balance. Developing convenient, rapid, portable analytical technology for on-site and high-frequency testing of FIP is essential to reduce its damage. Herein, a monoclonal antibody (Clone F-3F6) against FIP, with high affinity and specificity, was produced using a novel immunogen, FIP-BSA, which was simply and directly synthesized by conjugating FIP with bovine serum albumin (BSA). Among the previously reported antibodies, F-3F6 acts more specifically against FIP. The FIP metabolites fipronil desulfinyl, fipronil sulfide, and fipronil sulfone showed lower cross-reactivity, and other pesticides were not recognized. To achieve high-frequency and on-site measurements of FIP, an evanescent wave fluorescence biosensor was built by integrating evanescent wave fluorescence technology, a functionalized fiber bioprobe, and a fluorescence-labeled F-3F6 antibody. The detection limit of FIP was 0.032 μg/L. The detection results of real milk and water samples showed that all the coefficients of variation were less than 10%, and the recovery ranged from 90 to 120%. The high reusability and stability of functionalized fiber bioprobe enables the accurate, cost-effective, high-frequency, and facile quantitative detection of FIP. This highly specific and reliable evanescent wave fluorescence biosensor will be well suited to the sensitive and high-frequency on-site analysis of only FIP in food.\",\"PeriodicalId\":10057,\"journal\":{\"name\":\"Chemosensors\",\"volume\":\"12 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosensors\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/chemosensors11120578\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/chemosensors11120578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Rapid and Sensitive On-Site Detection of Fipronil in Foods Using Evanescent Wave Fluorescent Immunosensor
Fipronil (FIP), a broad-spectrum phenylpyrazole insecticide, is highly toxic and threatens human health and ecological balance. Developing convenient, rapid, portable analytical technology for on-site and high-frequency testing of FIP is essential to reduce its damage. Herein, a monoclonal antibody (Clone F-3F6) against FIP, with high affinity and specificity, was produced using a novel immunogen, FIP-BSA, which was simply and directly synthesized by conjugating FIP with bovine serum albumin (BSA). Among the previously reported antibodies, F-3F6 acts more specifically against FIP. The FIP metabolites fipronil desulfinyl, fipronil sulfide, and fipronil sulfone showed lower cross-reactivity, and other pesticides were not recognized. To achieve high-frequency and on-site measurements of FIP, an evanescent wave fluorescence biosensor was built by integrating evanescent wave fluorescence technology, a functionalized fiber bioprobe, and a fluorescence-labeled F-3F6 antibody. The detection limit of FIP was 0.032 μg/L. The detection results of real milk and water samples showed that all the coefficients of variation were less than 10%, and the recovery ranged from 90 to 120%. The high reusability and stability of functionalized fiber bioprobe enables the accurate, cost-effective, high-frequency, and facile quantitative detection of FIP. This highly specific and reliable evanescent wave fluorescence biosensor will be well suited to the sensitive and high-frequency on-site analysis of only FIP in food.
期刊介绍:
Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.The journal is indexed in Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Engineering Village and other databases.