{"title":"分数临界理论及其在地震学中的应用","authors":"B. Shevtsov, O. Sheremetyeva","doi":"10.3390/fractalfract7120890","DOIUrl":null,"url":null,"abstract":"To understand how the temporal non-locality («memory») properties of a process affect its critical regimes, the power-law compound and time-fractional Poisson process is presented as a universal hereditary model of criticality. Seismicity is considered as an application of the theory of criticality. On the basis of the proposed hereditarian criticality model, the critical regimes of seismicity are investigated. It is shown that the seismic process has the property of «memory» (non-locality over time) and statistical time-dependence of events. With a decrease in the fractional exponent of the Poisson process, the relaxation slows down, which can be associated with the hardening of the medium and the accumulation of elastic energy. Delayed relaxation is accompanied by an abnormal increase in fluctuations, which is caused by the non-local correlations of random events over time. According to the found criticality indices, the seismic process is in subcritical regimes for the zero and first moments and in supercritical regimes for the second statistical moment of events’ reoccurrence frequencies distribution. The supercritical regimes indicate the instability of the deformation changes that can go into a non-stationary regime of a seismic process.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"43 S203","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Criticality Theory and Its Application in Seismology\",\"authors\":\"B. Shevtsov, O. Sheremetyeva\",\"doi\":\"10.3390/fractalfract7120890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand how the temporal non-locality («memory») properties of a process affect its critical regimes, the power-law compound and time-fractional Poisson process is presented as a universal hereditary model of criticality. Seismicity is considered as an application of the theory of criticality. On the basis of the proposed hereditarian criticality model, the critical regimes of seismicity are investigated. It is shown that the seismic process has the property of «memory» (non-locality over time) and statistical time-dependence of events. With a decrease in the fractional exponent of the Poisson process, the relaxation slows down, which can be associated with the hardening of the medium and the accumulation of elastic energy. Delayed relaxation is accompanied by an abnormal increase in fluctuations, which is caused by the non-local correlations of random events over time. According to the found criticality indices, the seismic process is in subcritical regimes for the zero and first moments and in supercritical regimes for the second statistical moment of events’ reoccurrence frequencies distribution. The supercritical regimes indicate the instability of the deformation changes that can go into a non-stationary regime of a seismic process.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"43 S203\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7120890\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120890","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fractional Criticality Theory and Its Application in Seismology
To understand how the temporal non-locality («memory») properties of a process affect its critical regimes, the power-law compound and time-fractional Poisson process is presented as a universal hereditary model of criticality. Seismicity is considered as an application of the theory of criticality. On the basis of the proposed hereditarian criticality model, the critical regimes of seismicity are investigated. It is shown that the seismic process has the property of «memory» (non-locality over time) and statistical time-dependence of events. With a decrease in the fractional exponent of the Poisson process, the relaxation slows down, which can be associated with the hardening of the medium and the accumulation of elastic energy. Delayed relaxation is accompanied by an abnormal increase in fluctuations, which is caused by the non-local correlations of random events over time. According to the found criticality indices, the seismic process is in subcritical regimes for the zero and first moments and in supercritical regimes for the second statistical moment of events’ reoccurrence frequencies distribution. The supercritical regimes indicate the instability of the deformation changes that can go into a non-stationary regime of a seismic process.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.