基于铌酸锂薄膜平台的多功能微波光子电路

Weichao Ma, Ruixuan Wang, Jianwei Liu, Chenyu Liu, Wangzhe Li
{"title":"基于铌酸锂薄膜平台的多功能微波光子电路","authors":"Weichao Ma, Ruixuan Wang, Jianwei Liu, Chenyu Liu, Wangzhe Li","doi":"10.1117/12.3008119","DOIUrl":null,"url":null,"abstract":"A multi-functional microwave photonic circuit with meshed architecture is designed and demonstrated on thin film lithium niobate platform. Taking the advantages of the fast response of the Pockels effect and optimized device design, the operation bandwidth of the chip exceeds 60GHz. By controlling the transmission paths of the photon at each node, the on-chip device resources are configurated as a variety of microwave links, corresponding to different signal processing functions. The capabilities of signal generation, down-conversion mixing with high dynamic range and self-interference cancellation with high suppression ratio are experimentally demonstrated. For signal generation, the chip can be regarded as a frequency doubler, and both linear and nonlinear frequency modulated waveforms are obtained with a time-bandwidth product of 2×105 and an in-band spurious suppression ratio higher than 40dB. When configurated as a mixer, the chip achieves a spurious free dynamic range of 105 dB/Hz2/3 and a down-conversion efficiency of -7.4dB. The lithium niobate avoids the nonlinear carrier transportation and absorption existing in traditional silicon photonics, breaking the limitation of linearity and efficiency. As self-interference cancellation mode is set, the interference is suppressed by 50dB over 1.1GHz span. The uniformity of microfabrication in combination with the precise adjustment of the amplitude and phase of the optical field guarantees the high cancellation ratio. To the best of our knowledge, this photonic chip possesses the largest bandwidth and excellent comprehensive performance in terms of active signal processing among integrated multifunctional microwave photonic circuits.","PeriodicalId":298662,"journal":{"name":"Applied Optics and Photonics China","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-functional microwave photonic circuit based on thin film lithium niobate platform\",\"authors\":\"Weichao Ma, Ruixuan Wang, Jianwei Liu, Chenyu Liu, Wangzhe Li\",\"doi\":\"10.1117/12.3008119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-functional microwave photonic circuit with meshed architecture is designed and demonstrated on thin film lithium niobate platform. Taking the advantages of the fast response of the Pockels effect and optimized device design, the operation bandwidth of the chip exceeds 60GHz. By controlling the transmission paths of the photon at each node, the on-chip device resources are configurated as a variety of microwave links, corresponding to different signal processing functions. The capabilities of signal generation, down-conversion mixing with high dynamic range and self-interference cancellation with high suppression ratio are experimentally demonstrated. For signal generation, the chip can be regarded as a frequency doubler, and both linear and nonlinear frequency modulated waveforms are obtained with a time-bandwidth product of 2×105 and an in-band spurious suppression ratio higher than 40dB. When configurated as a mixer, the chip achieves a spurious free dynamic range of 105 dB/Hz2/3 and a down-conversion efficiency of -7.4dB. The lithium niobate avoids the nonlinear carrier transportation and absorption existing in traditional silicon photonics, breaking the limitation of linearity and efficiency. As self-interference cancellation mode is set, the interference is suppressed by 50dB over 1.1GHz span. The uniformity of microfabrication in combination with the precise adjustment of the amplitude and phase of the optical field guarantees the high cancellation ratio. To the best of our knowledge, this photonic chip possesses the largest bandwidth and excellent comprehensive performance in terms of active signal processing among integrated multifunctional microwave photonic circuits.\",\"PeriodicalId\":298662,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在铌酸锂薄膜平台上设计并演示了一种网状结构的多功能微波光子电路。利用波克尔斯效应的快速响应优势和优化的器件设计,该芯片的工作带宽超过了 60GHz。通过控制每个节点的光子传输路径,芯片上的器件资源被配置成各种微波链路,对应不同的信号处理功能。实验演示了信号生成、高动态范围的下变频混合和高抑制比的自干扰消除功能。在信号生成方面,该芯片可被视为倍频器,可获得线性和非线性频率调制波形,其时间带宽乘积为 2×105,带内杂散抑制比高于 40dB。当配置为混频器时,芯片的无杂散动态范围达到 105 dB/Hz2/3,下变频效率为 -7.4dB。铌酸锂避免了传统硅光子学中存在的非线性载流子传输和吸收,打破了线性和效率的限制。由于设置了自干扰消除模式,在 1.1 千兆赫跨度内,干扰被抑制了 50 分贝。微加工的均匀性与光场振幅和相位的精确调节相结合,保证了高消除率。据我们所知,在集成多功能微波光子电路中,该光子芯片具有最大的带宽和出色的有源信号处理综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-functional microwave photonic circuit based on thin film lithium niobate platform
A multi-functional microwave photonic circuit with meshed architecture is designed and demonstrated on thin film lithium niobate platform. Taking the advantages of the fast response of the Pockels effect and optimized device design, the operation bandwidth of the chip exceeds 60GHz. By controlling the transmission paths of the photon at each node, the on-chip device resources are configurated as a variety of microwave links, corresponding to different signal processing functions. The capabilities of signal generation, down-conversion mixing with high dynamic range and self-interference cancellation with high suppression ratio are experimentally demonstrated. For signal generation, the chip can be regarded as a frequency doubler, and both linear and nonlinear frequency modulated waveforms are obtained with a time-bandwidth product of 2×105 and an in-band spurious suppression ratio higher than 40dB. When configurated as a mixer, the chip achieves a spurious free dynamic range of 105 dB/Hz2/3 and a down-conversion efficiency of -7.4dB. The lithium niobate avoids the nonlinear carrier transportation and absorption existing in traditional silicon photonics, breaking the limitation of linearity and efficiency. As self-interference cancellation mode is set, the interference is suppressed by 50dB over 1.1GHz span. The uniformity of microfabrication in combination with the precise adjustment of the amplitude and phase of the optical field guarantees the high cancellation ratio. To the best of our knowledge, this photonic chip possesses the largest bandwidth and excellent comprehensive performance in terms of active signal processing among integrated multifunctional microwave photonic circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信