时间尺度上模糊函数的分数微分与积分

Mina Shahidi, E. Esmi, L. C. Barros
{"title":"时间尺度上模糊函数的分数微分与积分","authors":"Mina Shahidi, E. Esmi, L. C. Barros","doi":"10.5540/03.2023.010.01.0056","DOIUrl":null,"url":null,"abstract":". In this paper, we propose a new definition of the fractional derivative and fractional integral for fuzzy functions on time scales. The introduced derivative is a natural extension of the Hukuhara derivative. Furthermore, some properties of the introduced derivative and integral are studied. Some examples are provided to illustrate the obtained results.","PeriodicalId":274912,"journal":{"name":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","volume":"99 s395","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Differentiation and Integration for Fuzzy Functions on Time Scales\",\"authors\":\"Mina Shahidi, E. Esmi, L. C. Barros\",\"doi\":\"10.5540/03.2023.010.01.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we propose a new definition of the fractional derivative and fractional integral for fuzzy functions on time scales. The introduced derivative is a natural extension of the Hukuhara derivative. Furthermore, some properties of the introduced derivative and integral are studied. Some examples are provided to illustrate the obtained results.\",\"PeriodicalId\":274912,\"journal\":{\"name\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"volume\":\"99 s395\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5540/03.2023.010.01.0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding Series of the Brazilian Society of Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/03.2023.010.01.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.本文提出了时间尺度上模糊函数的分数导数和分数积分的新定义。引入的导数是 Hukuhara 导数的自然扩展。此外,我们还研究了引入的导数和积分的一些性质。还提供了一些例子来说明所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Differentiation and Integration for Fuzzy Functions on Time Scales
. In this paper, we propose a new definition of the fractional derivative and fractional integral for fuzzy functions on time scales. The introduced derivative is a natural extension of the Hukuhara derivative. Furthermore, some properties of the introduced derivative and integral are studied. Some examples are provided to illustrate the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信