工艺参数对 FSW 过程中 Ti-6Al-4V 合金接头微观结构特征和机械属性转变的影响

D. Srinivasan, P. Sevvel, J. .. Gunasekaran
{"title":"工艺参数对 FSW 过程中 Ti-6Al-4V 合金接头微观结构特征和机械属性转变的影响","authors":"D. Srinivasan, P. Sevvel, J. .. Gunasekaran","doi":"10.1515/pm-2023-1039","DOIUrl":null,"url":null,"abstract":"Abstract Transformations in microstructural characteristics and mechanical attributes of friction stir welded 3 mm thick Ti–6Al–4V alloy plates was investigated by employing distinctive tool rotational and traverse speeds. Impact of these parameters on microstructural transitions, generation of flaws, hardness, and tensile properties of the joints were analyzed. Increase in rotational speed from 1200 rpm to 1600 rpm have contributed for escalation in temperature, even above the β transus temperature. Large sized lamellar alpha grains was found to be transformed into finely refined lamellar alpha + altered beta grains in uppermost portion of nugget zone of joints fabricated at 1600 rpm and 50 mm/min combinations. This transformation have occurred due to the impact of the thermal cycles and stirring mechanism. These joints were found to be free from flaws including volumetric related defects, kissing bond, tunnel flaws. Majority of the fabricated joints possessed lowest value of mechanical properties in their heat affected zone and exhibited fracture in this zone. Properties of Ti–6Al–4V alloy joints were evaluated with respect to pseudo index of heat and it was observed that rotational speed of the tool is a dominant parameter in impacting both the mechanical attributes and microstructural transformations of the joints.","PeriodicalId":20360,"journal":{"name":"Practical Metallography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of process parameters on transitions in the microstructural characteristics and mechanical attributes of Ti–6Al–4V alloy joints during FSW\",\"authors\":\"D. Srinivasan, P. Sevvel, J. .. Gunasekaran\",\"doi\":\"10.1515/pm-2023-1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Transformations in microstructural characteristics and mechanical attributes of friction stir welded 3 mm thick Ti–6Al–4V alloy plates was investigated by employing distinctive tool rotational and traverse speeds. Impact of these parameters on microstructural transitions, generation of flaws, hardness, and tensile properties of the joints were analyzed. Increase in rotational speed from 1200 rpm to 1600 rpm have contributed for escalation in temperature, even above the β transus temperature. Large sized lamellar alpha grains was found to be transformed into finely refined lamellar alpha + altered beta grains in uppermost portion of nugget zone of joints fabricated at 1600 rpm and 50 mm/min combinations. This transformation have occurred due to the impact of the thermal cycles and stirring mechanism. These joints were found to be free from flaws including volumetric related defects, kissing bond, tunnel flaws. Majority of the fabricated joints possessed lowest value of mechanical properties in their heat affected zone and exhibited fracture in this zone. Properties of Ti–6Al–4V alloy joints were evaluated with respect to pseudo index of heat and it was observed that rotational speed of the tool is a dominant parameter in impacting both the mechanical attributes and microstructural transformations of the joints.\",\"PeriodicalId\":20360,\"journal\":{\"name\":\"Practical Metallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Metallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/pm-2023-1039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Metallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/pm-2023-1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 通过采用不同的工具旋转和横移速度,研究了摩擦搅拌焊接 3 毫米厚 Ti-6Al-4V 合金板材的微观结构特征和机械属性的转变。分析了这些参数对接头微观结构转变、缺陷产生、硬度和拉伸性能的影响。转速从 1200 转/分提高到 1600 转/分,导致温度升高,甚至超过了 β 转温度。在以 1600 转/分钟和 50 毫米/分钟组合制造的接头中,发现在金块区的最上部,大尺寸的片状α晶粒转变为细化的片状α晶粒和改变的β晶粒。发生这种转变的原因是热循环和搅拌机制的影响。这些接头无缺陷,包括体积相关缺陷、吻合缺陷和隧道缺陷。大多数制造的接头在热影响区的机械性能值最低,并在该区域出现断裂。根据假热指数对 Ti-6Al-4V 合金接头的性能进行了评估,结果表明,工具的旋转速度是影响接头机械性能和微观结构变化的主要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of process parameters on transitions in the microstructural characteristics and mechanical attributes of Ti–6Al–4V alloy joints during FSW
Abstract Transformations in microstructural characteristics and mechanical attributes of friction stir welded 3 mm thick Ti–6Al–4V alloy plates was investigated by employing distinctive tool rotational and traverse speeds. Impact of these parameters on microstructural transitions, generation of flaws, hardness, and tensile properties of the joints were analyzed. Increase in rotational speed from 1200 rpm to 1600 rpm have contributed for escalation in temperature, even above the β transus temperature. Large sized lamellar alpha grains was found to be transformed into finely refined lamellar alpha + altered beta grains in uppermost portion of nugget zone of joints fabricated at 1600 rpm and 50 mm/min combinations. This transformation have occurred due to the impact of the thermal cycles and stirring mechanism. These joints were found to be free from flaws including volumetric related defects, kissing bond, tunnel flaws. Majority of the fabricated joints possessed lowest value of mechanical properties in their heat affected zone and exhibited fracture in this zone. Properties of Ti–6Al–4V alloy joints were evaluated with respect to pseudo index of heat and it was observed that rotational speed of the tool is a dominant parameter in impacting both the mechanical attributes and microstructural transformations of the joints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信