{"title":"列超拉的 S 嵌入及其对模糊列代数的影响","authors":"Abdullah Assiry, Sabeur Mansour, A. Baklouti","doi":"10.3390/axioms13010002","DOIUrl":null,"url":null,"abstract":"This paper performed an investigation into the s-embedding of the Lie superalgebra (→S1∣1), a representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was to establish a precise definition of the s-embedding, effectively dissecting the Lie superalgebra into the superalgebra of super-pseudodifferential operators ( SψD⊙) residing on the super-circle S1|1. We also introduce and rigorously define the central charge within the framework of (→S1∣1), leveraging the canonical central extension of SψD⊙. Moreover, we expanded the scope of our inquiry to encompass the domain of fuzzy Lie algebras, seeking to elucidate potential connections and parallels between these ostensibly distinct mathematical constructs. Our exploration spanned various facets, including non-commutative structures, representation theory, central extensions, and central charges, as we aimed to bridge the gap between Lie superalgebras and fuzzy Lie algebras. To summarize, this paper is a pioneering work with two pivotal contributions. Initially, a meticulous definition of the s-embedding of the Lie superalgebra (→S1|1) is provided, emphasizing the representationof smooth vector fields on the (1,1)-dimensional super-circle, thereby enriching a fundamental comprehension of the topic. Moreover, an investigation of the realm of fuzzy Lie algebras was undertaken, probing associations with conventional Lie superalgebras. Capitalizing on these discoveries, we expound upon the nexus between central extensions and provide a novel deformed representation of the central charge.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":" 37","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras\",\"authors\":\"Abdullah Assiry, Sabeur Mansour, A. Baklouti\",\"doi\":\"10.3390/axioms13010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper performed an investigation into the s-embedding of the Lie superalgebra (→S1∣1), a representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was to establish a precise definition of the s-embedding, effectively dissecting the Lie superalgebra into the superalgebra of super-pseudodifferential operators ( SψD⊙) residing on the super-circle S1|1. We also introduce and rigorously define the central charge within the framework of (→S1∣1), leveraging the canonical central extension of SψD⊙. Moreover, we expanded the scope of our inquiry to encompass the domain of fuzzy Lie algebras, seeking to elucidate potential connections and parallels between these ostensibly distinct mathematical constructs. Our exploration spanned various facets, including non-commutative structures, representation theory, central extensions, and central charges, as we aimed to bridge the gap between Lie superalgebras and fuzzy Lie algebras. To summarize, this paper is a pioneering work with two pivotal contributions. Initially, a meticulous definition of the s-embedding of the Lie superalgebra (→S1|1) is provided, emphasizing the representationof smooth vector fields on the (1,1)-dimensional super-circle, thereby enriching a fundamental comprehension of the topic. Moreover, an investigation of the realm of fuzzy Lie algebras was undertaken, probing associations with conventional Lie superalgebras. Capitalizing on these discoveries, we expound upon the nexus between central extensions and provide a novel deformed representation of the central charge.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\" 37\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13010002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13010002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
S-Embedding of Lie Superalgebras and Its Implications for Fuzzy Lie Algebras
This paper performed an investigation into the s-embedding of the Lie superalgebra (→S1∣1), a representation of smooth vector fields on a (1,1)-dimensional super-circle. Our primary objective was to establish a precise definition of the s-embedding, effectively dissecting the Lie superalgebra into the superalgebra of super-pseudodifferential operators ( SψD⊙) residing on the super-circle S1|1. We also introduce and rigorously define the central charge within the framework of (→S1∣1), leveraging the canonical central extension of SψD⊙. Moreover, we expanded the scope of our inquiry to encompass the domain of fuzzy Lie algebras, seeking to elucidate potential connections and parallels between these ostensibly distinct mathematical constructs. Our exploration spanned various facets, including non-commutative structures, representation theory, central extensions, and central charges, as we aimed to bridge the gap between Lie superalgebras and fuzzy Lie algebras. To summarize, this paper is a pioneering work with two pivotal contributions. Initially, a meticulous definition of the s-embedding of the Lie superalgebra (→S1|1) is provided, emphasizing the representationof smooth vector fields on the (1,1)-dimensional super-circle, thereby enriching a fundamental comprehension of the topic. Moreover, an investigation of the realm of fuzzy Lie algebras was undertaken, probing associations with conventional Lie superalgebras. Capitalizing on these discoveries, we expound upon the nexus between central extensions and provide a novel deformed representation of the central charge.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.