水、肥料和空气协同作用下的滴灌系统性能

IF 3.1 3区 农林科学 Q1 HORTICULTURE
Hao Li, Zhengjun Ma, Guangsong Zhang, Jiayao Chen, Yunchao Lu, Peng Li
{"title":"水、肥料和空气协同作用下的滴灌系统性能","authors":"Hao Li, Zhengjun Ma, Guangsong Zhang, Jiayao Chen, Yunchao Lu, Peng Li","doi":"10.3390/horticulturae10010006","DOIUrl":null,"url":null,"abstract":"The co-application of water, fertilizer, and air is a new water-saving irrigation method based on drip irrigation technology, which can effectively alleviate the phenomenon of soil rhizosphere hypoxia, improve water and fertilizer utilization efficiency, and inhibit the clogging of irrigation equipment in drip irrigation systems. The performance of drip irrigation systems is one of the important factors affecting the effectiveness of the co-application of water, fertilizer, and air. However, the impact of factors such as the aeration method, fertilization device, and working parameters on the performance of drip irrigation systems for the co-application of water, fertilizer, and air is still unclear. Therefore, based on two typical aeration methods, i.e., micro-nano and Venturi aeration, the performance of a drip irrigation system under the co-application of water, fertilizer, and air was studied by comparing and analyzing the effects of different aeration methods, working pressures of the drip irrigation system, and the pressure difference between the inlet and outlet of fertilizer irrigation on the spatial distribution uniformity of water, fertilizer, and air in the drip irrigation pipeline network. The results showed that the pressure difference between the inlet and outlet of fertilization irrigation had no significant impact on system performance, while the working pressure significantly affected system performance. Compared with the effective effect of Venturi aeration on system performance, micro-nano aeration can significantly affect drip irrigation system performance and effectively improve drip irrigation system performance. The micro-nano-aerated drip irrigation system with the co-application of water, fertilizer, and air under a working pressure of 0.1 MPa has better system performance. The research results are of great significance for revealing the mechanism underlying the impact of the co-application of water, fertilizer, and air on the performance of drip irrigation systems and constructing efficient drip irrigation technology for the co-application of water, fertilizer, and air.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":" 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of a Drip Irrigation System under the Co-Application of Water, Fertilizer, and Air\",\"authors\":\"Hao Li, Zhengjun Ma, Guangsong Zhang, Jiayao Chen, Yunchao Lu, Peng Li\",\"doi\":\"10.3390/horticulturae10010006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The co-application of water, fertilizer, and air is a new water-saving irrigation method based on drip irrigation technology, which can effectively alleviate the phenomenon of soil rhizosphere hypoxia, improve water and fertilizer utilization efficiency, and inhibit the clogging of irrigation equipment in drip irrigation systems. The performance of drip irrigation systems is one of the important factors affecting the effectiveness of the co-application of water, fertilizer, and air. However, the impact of factors such as the aeration method, fertilization device, and working parameters on the performance of drip irrigation systems for the co-application of water, fertilizer, and air is still unclear. Therefore, based on two typical aeration methods, i.e., micro-nano and Venturi aeration, the performance of a drip irrigation system under the co-application of water, fertilizer, and air was studied by comparing and analyzing the effects of different aeration methods, working pressures of the drip irrigation system, and the pressure difference between the inlet and outlet of fertilizer irrigation on the spatial distribution uniformity of water, fertilizer, and air in the drip irrigation pipeline network. The results showed that the pressure difference between the inlet and outlet of fertilization irrigation had no significant impact on system performance, while the working pressure significantly affected system performance. Compared with the effective effect of Venturi aeration on system performance, micro-nano aeration can significantly affect drip irrigation system performance and effectively improve drip irrigation system performance. The micro-nano-aerated drip irrigation system with the co-application of water, fertilizer, and air under a working pressure of 0.1 MPa has better system performance. The research results are of great significance for revealing the mechanism underlying the impact of the co-application of water, fertilizer, and air on the performance of drip irrigation systems and constructing efficient drip irrigation technology for the co-application of water, fertilizer, and air.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10010006\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10010006","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

水、肥、气共施是一种基于滴灌技术的新型节水灌溉方法,可有效缓解土壤根圈缺氧现象,提高水肥利用效率,抑制滴灌系统中灌溉设备的堵塞。滴灌系统的性能是影响水、肥、气共施效果的重要因素之一。然而,曝气方式、施肥装置和工作参数等因素对滴灌系统水、肥、气同施性能的影响尚不明确。因此,以微纳米曝气和文丘里曝气两种典型曝气方式为基础,通过比较分析不同曝气方式、滴灌系统工作压力、施肥灌溉出入口压力差对滴灌管网中水、肥、气空间分布均匀性的影响,研究了水、肥、气共施滴灌系统的性能。结果表明,施肥灌溉出入口压差对系统性能无显著影响,而工作压力对系统性能有显著影响。与文丘里曝气对系统性能的有效影响相比,微纳米曝气能显著影响滴灌系统性能,有效提高滴灌系统性能。在 0.1 MPa 的工作压力下,水、肥、气共施的微纳米曝气滴灌系统具有更好的系统性能。该研究成果对于揭示水肥气共渗对滴灌系统性能的影响机理,构建高效的水肥气共渗滴灌技术具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of a Drip Irrigation System under the Co-Application of Water, Fertilizer, and Air
The co-application of water, fertilizer, and air is a new water-saving irrigation method based on drip irrigation technology, which can effectively alleviate the phenomenon of soil rhizosphere hypoxia, improve water and fertilizer utilization efficiency, and inhibit the clogging of irrigation equipment in drip irrigation systems. The performance of drip irrigation systems is one of the important factors affecting the effectiveness of the co-application of water, fertilizer, and air. However, the impact of factors such as the aeration method, fertilization device, and working parameters on the performance of drip irrigation systems for the co-application of water, fertilizer, and air is still unclear. Therefore, based on two typical aeration methods, i.e., micro-nano and Venturi aeration, the performance of a drip irrigation system under the co-application of water, fertilizer, and air was studied by comparing and analyzing the effects of different aeration methods, working pressures of the drip irrigation system, and the pressure difference between the inlet and outlet of fertilizer irrigation on the spatial distribution uniformity of water, fertilizer, and air in the drip irrigation pipeline network. The results showed that the pressure difference between the inlet and outlet of fertilization irrigation had no significant impact on system performance, while the working pressure significantly affected system performance. Compared with the effective effect of Venturi aeration on system performance, micro-nano aeration can significantly affect drip irrigation system performance and effectively improve drip irrigation system performance. The micro-nano-aerated drip irrigation system with the co-application of water, fertilizer, and air under a working pressure of 0.1 MPa has better system performance. The research results are of great significance for revealing the mechanism underlying the impact of the co-application of water, fertilizer, and air on the performance of drip irrigation systems and constructing efficient drip irrigation technology for the co-application of water, fertilizer, and air.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
期刊介绍: Horticulturae (ISSN 2311-7524) is an international, multidisciplinary, peer-reviewed, open access journal focusing on all areas and aspects of temperate to tropical horticulture. It publishes original empirical and theoretical research articles, short communications, reviews, and opinion articles. We intend to encourage scientists to publish and communicate their results concerning all branches of horticulture in a timely manner and in an open venue, after being evaluated by the journal editors and randomly selected independent expert reviewers, so that all articles will never be judged in relation to how much they confirm or criticize the opinions of other researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信