利用遗传算法设计用于医学分类的区间-3 型模糊推理系统

IF 1.9 3区 数学 Q1 MATHEMATICS, APPLIED
Axioms Pub Date : 2023-12-20 DOI:10.3390/axioms13010005
P. Melin, D. Sánchez, Oscar Castillo
{"title":"利用遗传算法设计用于医学分类的区间-3 型模糊推理系统","authors":"P. Melin, D. Sánchez, Oscar Castillo","doi":"10.3390/axioms13010005","DOIUrl":null,"url":null,"abstract":"An essential aspect of healthcare is receiving an appropriate and opportune disease diagnosis. In recent years, there has been enormous progress in combining artificial intelligence to help professionals perform these tasks. The design of interval Type-3 fuzzy inference systems (IT3FIS) for medical classification is proposed in this work. This work proposed a genetic algorithm (GA) for the IT3FIS design where the fuzzy inputs correspond to attributes relational to a particular disease. This optimization allows us to find some main fuzzy inference systems (FIS) parameters, such as membership function (MF) parameters and the fuzzy if-then rules. As a comparison against the proposed method, the results achieved in this work are compared with Type-1 fuzzy inference systems (T1FIS), Interval Type-2 fuzzy inference systems (IT2FIS), and General Type-2 fuzzy inference systems (GT2FIS) using medical datasets such as Haberman’s Survival, Cryotherapy, Immunotherapy, PIMA Indian Diabetes, Indian Liver, and Breast Cancer Coimbra dataset, which achieved 75.30, 87.13, 82.04, 77.76, 71.86, and 71.06, respectively. Also, cross-validation tests were performed. Instances established as design sets are used to design the fuzzy inference systems, the optimization technique seeks to reduce the classification error using this set, and finally, the testing set allows the validation of the real performance of the FIS.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"119 13","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval Type-3 Fuzzy Inference System Design for Medical Classification Using Genetic Algorithms\",\"authors\":\"P. Melin, D. Sánchez, Oscar Castillo\",\"doi\":\"10.3390/axioms13010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An essential aspect of healthcare is receiving an appropriate and opportune disease diagnosis. In recent years, there has been enormous progress in combining artificial intelligence to help professionals perform these tasks. The design of interval Type-3 fuzzy inference systems (IT3FIS) for medical classification is proposed in this work. This work proposed a genetic algorithm (GA) for the IT3FIS design where the fuzzy inputs correspond to attributes relational to a particular disease. This optimization allows us to find some main fuzzy inference systems (FIS) parameters, such as membership function (MF) parameters and the fuzzy if-then rules. As a comparison against the proposed method, the results achieved in this work are compared with Type-1 fuzzy inference systems (T1FIS), Interval Type-2 fuzzy inference systems (IT2FIS), and General Type-2 fuzzy inference systems (GT2FIS) using medical datasets such as Haberman’s Survival, Cryotherapy, Immunotherapy, PIMA Indian Diabetes, Indian Liver, and Breast Cancer Coimbra dataset, which achieved 75.30, 87.13, 82.04, 77.76, 71.86, and 71.06, respectively. Also, cross-validation tests were performed. Instances established as design sets are used to design the fuzzy inference systems, the optimization technique seeks to reduce the classification error using this set, and finally, the testing set allows the validation of the real performance of the FIS.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"119 13\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13010005\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms13010005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

医疗保健的一个重要方面是接受适当、适时的疾病诊断。近年来,人工智能在帮助专业人员完成这些任务方面取得了巨大进步。本研究提出了用于医学分类的区间三型模糊推理系统(IT3FIS)的设计方案。这项工作为 IT3FIS 的设计提出了一种遗传算法(GA),其中模糊输入对应于与特定疾病相关的属性。通过这种优化,我们可以找到一些主要的模糊推理系统(FIS)参数,如成员函数(MF)参数和模糊 "如果-那么 "规则。为了与所提出的方法进行比较,我们使用哈伯曼生存、冷冻疗法、免疫疗法、PIMA 印度糖尿病、印度肝脏和乳腺癌科英布拉数据集,将这项工作所取得的结果与第一类模糊推理系统(T1FIS)、区间第二类模糊推理系统(IT2FIS)和一般第二类模糊推理系统(GT2FIS)进行了比较,结果分别为 75.30、87.13、82.04、77.76、71.86 和 71.06。此外,还进行了交叉验证测试。作为设计集建立的实例用于设计模糊推理系统,优化技术旨在利用该集减少分类误差,最后,测试集可以验证模糊推理系统的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval Type-3 Fuzzy Inference System Design for Medical Classification Using Genetic Algorithms
An essential aspect of healthcare is receiving an appropriate and opportune disease diagnosis. In recent years, there has been enormous progress in combining artificial intelligence to help professionals perform these tasks. The design of interval Type-3 fuzzy inference systems (IT3FIS) for medical classification is proposed in this work. This work proposed a genetic algorithm (GA) for the IT3FIS design where the fuzzy inputs correspond to attributes relational to a particular disease. This optimization allows us to find some main fuzzy inference systems (FIS) parameters, such as membership function (MF) parameters and the fuzzy if-then rules. As a comparison against the proposed method, the results achieved in this work are compared with Type-1 fuzzy inference systems (T1FIS), Interval Type-2 fuzzy inference systems (IT2FIS), and General Type-2 fuzzy inference systems (GT2FIS) using medical datasets such as Haberman’s Survival, Cryotherapy, Immunotherapy, PIMA Indian Diabetes, Indian Liver, and Breast Cancer Coimbra dataset, which achieved 75.30, 87.13, 82.04, 77.76, 71.86, and 71.06, respectively. Also, cross-validation tests were performed. Instances established as design sets are used to design the fuzzy inference systems, the optimization technique seeks to reduce the classification error using this set, and finally, the testing set allows the validation of the real performance of the FIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axioms
Axioms Mathematics-Algebra and Number Theory
自引率
10.00%
发文量
604
审稿时长
11 weeks
期刊介绍: Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信