{"title":"二氧化硅对 rGO/Fe3O4 作为氧还原电催化剂的电催化性能的影响","authors":"F. Yusoff, Karthi Suresh","doi":"10.4028/p-XRDbR5","DOIUrl":null,"url":null,"abstract":"In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"65 16","pages":"143 - 149"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Silica Dioxide in the Electrocatalytic Performances of rGO/Fe3O4 as Oxygen Reduction Electrocatalyst\",\"authors\":\"F. Yusoff, Karthi Suresh\",\"doi\":\"10.4028/p-XRDbR5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.\",\"PeriodicalId\":21754,\"journal\":{\"name\":\"Solid State Phenomena\",\"volume\":\"65 16\",\"pages\":\"143 - 149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-XRDbR5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-XRDbR5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of Silica Dioxide in the Electrocatalytic Performances of rGO/Fe3O4 as Oxygen Reduction Electrocatalyst
In this study, synthesis of reduced graphene oxide-iron oxide-silica dioxide (rGO/Fe3O4/SiO2) was done through a facile chemical process. Physical characterization was carried out as such Fourier transform infrared spectroscopy (FTIR) which confirmed the presence of silica peak in the spectrum of rGO/Fe3O4/SiO2, while RAMAN displayed the vibrational bands of carbon materials studied. Results of SEM-EDX and TEM confirmed the unification of SiO2 on rGO/Fe3O4 nanocomposite with difference in morphologic structure. X-ray diffraction (XRD) analysis exhibited that addition of SiO2 increased the crystalline size of the nanocomposite. Nitrogen adsorption isotherm analysis describes the nanocomposites fall in the mesopore region. The nanocomposite was then drop-casted on the surface of glassy carbon electrode (GCE) for fabrication of the electrode which denoted as rGO/Fe3O4/SiO2/GCE. Electrochemical characterization of modified electrode was studied using electron impedance spectroscopy (EIS), which showed the minimal resistance charge transfer. Oxygen reduction reaction analysis shows that electrocatalytic reduction of oxygen was excellent with four-electron transfer when calculated using Randles-Sevcik equation. All the analysis was compared to the nanocomposites without the addition of silica oxide (rGO/Fe3O4). This work proves that addition of nanoparticle in a compound as a matrix improves the oxygen reduction potential of rGO/Fe3O4/SiO2/GCE composite.