Muhammad Amjad Bashir, A. Rehim, Namra Khurshid, Qurat-Ul-Ain Raza, Hifsa Khurshid, Hafiz M. U. Raza
{"title":"叶面施肥磷和锌对石灰性盐碱地饲料玉米生物计量和质量属性的影响","authors":"Muhammad Amjad Bashir, A. Rehim, Namra Khurshid, Qurat-Ul-Ain Raza, Hifsa Khurshid, Hafiz M. U. Raza","doi":"10.38211/joarps.2024.05.220","DOIUrl":null,"url":null,"abstract":"The hot climate is the major reason to promote salt salinization and sodication, which retards the crop productivity. The increase in salt-affected soils is adversely affecting worldwide productivity. The antagonistic effect among P and Zn causes nutrient deficiency and increases under saline conditions. The present study aimed to identify the targeted influence of foliar application of P and Zn on maize biometric and fodder quality parameters under saline-sodic conditions. The experiment was based on three P (0, 1, 2, 2.5%) and Zn levels (0, 1, and 1.5%), with three replications. The study showed that P concentration in maize was improved significantly with Z1P1 (51.0%) application, followed by Z0P2 (33.15%) and Z1.5P2.5 (28.0%). The Zn concentration enhanced with Z1P0 (91.73%), followed by Z0P1 (84.45%) and Z1.5P1 (84.18%). Nitrogen concentration improved with Z1.5P2.5 (39.84%). Total mineral contents were increased with Z1.5P2 (156.71%), followed by Z0P1 (142.64%) and Z0P2 (141.99%). Crude protein concentration was improved in Z1.5P1 (39.92%), followed by Z0P2 (11.92%). Crude fat percentage was increased with Z0P2.5 (51.89%), followed by Z0P1 (34.91%) as compared to Z0P0. The study concludes that foliar application of P and Zn in saline-sodic conditions helps retard the negative impacts of salts on biometric and quality parameters of maize fodder.","PeriodicalId":475825,"journal":{"name":"Journal of applied research in plant sciences","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Foliar Application of Phosphorus and Zinc on Biometric and Quality Attributes of Fodder Maize in Calcareous Saline-Sodic Soils\",\"authors\":\"Muhammad Amjad Bashir, A. Rehim, Namra Khurshid, Qurat-Ul-Ain Raza, Hifsa Khurshid, Hafiz M. U. Raza\",\"doi\":\"10.38211/joarps.2024.05.220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hot climate is the major reason to promote salt salinization and sodication, which retards the crop productivity. The increase in salt-affected soils is adversely affecting worldwide productivity. The antagonistic effect among P and Zn causes nutrient deficiency and increases under saline conditions. The present study aimed to identify the targeted influence of foliar application of P and Zn on maize biometric and fodder quality parameters under saline-sodic conditions. The experiment was based on three P (0, 1, 2, 2.5%) and Zn levels (0, 1, and 1.5%), with three replications. The study showed that P concentration in maize was improved significantly with Z1P1 (51.0%) application, followed by Z0P2 (33.15%) and Z1.5P2.5 (28.0%). The Zn concentration enhanced with Z1P0 (91.73%), followed by Z0P1 (84.45%) and Z1.5P1 (84.18%). Nitrogen concentration improved with Z1.5P2.5 (39.84%). Total mineral contents were increased with Z1.5P2 (156.71%), followed by Z0P1 (142.64%) and Z0P2 (141.99%). Crude protein concentration was improved in Z1.5P1 (39.92%), followed by Z0P2 (11.92%). Crude fat percentage was increased with Z0P2.5 (51.89%), followed by Z0P1 (34.91%) as compared to Z0P0. The study concludes that foliar application of P and Zn in saline-sodic conditions helps retard the negative impacts of salts on biometric and quality parameters of maize fodder.\",\"PeriodicalId\":475825,\"journal\":{\"name\":\"Journal of applied research in plant sciences\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied research in plant sciences\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.38211/joarps.2024.05.220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied research in plant sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.38211/joarps.2024.05.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Foliar Application of Phosphorus and Zinc on Biometric and Quality Attributes of Fodder Maize in Calcareous Saline-Sodic Soils
The hot climate is the major reason to promote salt salinization and sodication, which retards the crop productivity. The increase in salt-affected soils is adversely affecting worldwide productivity. The antagonistic effect among P and Zn causes nutrient deficiency and increases under saline conditions. The present study aimed to identify the targeted influence of foliar application of P and Zn on maize biometric and fodder quality parameters under saline-sodic conditions. The experiment was based on three P (0, 1, 2, 2.5%) and Zn levels (0, 1, and 1.5%), with three replications. The study showed that P concentration in maize was improved significantly with Z1P1 (51.0%) application, followed by Z0P2 (33.15%) and Z1.5P2.5 (28.0%). The Zn concentration enhanced with Z1P0 (91.73%), followed by Z0P1 (84.45%) and Z1.5P1 (84.18%). Nitrogen concentration improved with Z1.5P2.5 (39.84%). Total mineral contents were increased with Z1.5P2 (156.71%), followed by Z0P1 (142.64%) and Z0P2 (141.99%). Crude protein concentration was improved in Z1.5P1 (39.92%), followed by Z0P2 (11.92%). Crude fat percentage was increased with Z0P2.5 (51.89%), followed by Z0P1 (34.91%) as compared to Z0P0. The study concludes that foliar application of P and Zn in saline-sodic conditions helps retard the negative impacts of salts on biometric and quality parameters of maize fodder.