机器学习中合成少数群体超采样技术的挑战和局限性

I. Alkhawaldeh, Ibrahem Albalkhi, Abdulqadir J Naswhan
{"title":"机器学习中合成少数群体超采样技术的挑战和局限性","authors":"I. Alkhawaldeh, Ibrahem Albalkhi, Abdulqadir J Naswhan","doi":"10.5662/wjm.v13.i5.373","DOIUrl":null,"url":null,"abstract":"Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.","PeriodicalId":94271,"journal":{"name":"World journal of methodology","volume":"35 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and limitations of synthetic minority oversampling techniques in machine learning\",\"authors\":\"I. Alkhawaldeh, Ibrahem Albalkhi, Abdulqadir J Naswhan\",\"doi\":\"10.5662/wjm.v13.i5.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.\",\"PeriodicalId\":94271,\"journal\":{\"name\":\"World journal of methodology\",\"volume\":\"35 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of methodology\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.5662/wjm.v13.i5.373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of methodology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.5662/wjm.v13.i5.373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过度取样是处理阶级不平衡数据集的最常用方法,这一点从过去二十年中开发的大量过度取样方法中可见一斑。在下面的社论中,我们将论证超采样的问题,这些问题源于过度拟合的可能性以及生成的合成案例可能无法准确代表少数群体。在使用超采样技术时应考虑到这些局限性。我们还提出了几种处理不平衡数据的替代策略以及未来工作展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and limitations of synthetic minority oversampling techniques in machine learning
Oversampling is the most utilized approach to deal with class-imbalanced datasets, as seen by the plethora of oversampling methods developed in the last two decades. We argue in the following editorial the issues with oversampling that stem from the possibility of overfitting and the generation of synthetic cases that might not accurately represent the minority class. These limitations should be considered when using oversampling techniques. We also propose several alternate strategies for dealing with imbalanced data, as well as a future work perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信