A. Popkov, E. Gorbach, E. Gorbach, N. A. Kononovich, E. A. Kireeva, D. Popkov
{"title":"用于治疗骨软骨缺损的生物活性可降解聚己内酯植入物:一项实验研究","authors":"A. Popkov, E. Gorbach, E. Gorbach, N. A. Kononovich, E. A. Kireeva, D. Popkov","doi":"10.18019/1028-4427-2023-29-6-615-628","DOIUrl":null,"url":null,"abstract":"Introducrion Repair of the affected articular surface still remains an unsolved problem.The purpose of this study was to assess the efficacy of a biodegradable polycaprolactone implant coated with hydroxyapatite on the healing of an osteochondral defect of the femoral condyle in rats.Materials and methods An osteochondral defect of the medial femoral condyle was modeled in 76 Wistar rats divided into 2 groups. In the experimental group, the defect was replaced with a biodegradable polycaprolactone membrane coated with hydroxyapatite. In the control group, the defect remained untreated. The results were assessed within a year.Results In the experimental group, the animals had a significantly better range of motion at all stages of the experiment than the control animals. The implant ensured the integrity and congruence of the articular surface. On day 180, a newly formed area of the articular surface of the organotypic structure was observed in the defect. Biomechanical properties of the repaied zone restored after 60 days while in the control one they remained lower by 27-29 %.Discussion Filling the defect with an elastic implant made of polyprolactone with hydroxyapatite provided early functional load on the joint. The structure of the implant, simulating the extracellular matrix, promoted the growth, proliferation and directed differentiation of cells in the area of the osteochondral defect. The moderate rate of biodegradability of the material provided gradual replacement of the implant with organ-specific tissues.Conclusion A biodegradable polycaprolactone implant impregnated with hydroxyapatite particles might be effective for experimental osteochondral defect repair.","PeriodicalId":37426,"journal":{"name":"Genij Ortopedii","volume":"54 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive biodegradable polycaprolactone implant for management of osteochondral defects: an experimental study\",\"authors\":\"A. Popkov, E. Gorbach, E. Gorbach, N. A. Kononovich, E. A. Kireeva, D. Popkov\",\"doi\":\"10.18019/1028-4427-2023-29-6-615-628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducrion Repair of the affected articular surface still remains an unsolved problem.The purpose of this study was to assess the efficacy of a biodegradable polycaprolactone implant coated with hydroxyapatite on the healing of an osteochondral defect of the femoral condyle in rats.Materials and methods An osteochondral defect of the medial femoral condyle was modeled in 76 Wistar rats divided into 2 groups. In the experimental group, the defect was replaced with a biodegradable polycaprolactone membrane coated with hydroxyapatite. In the control group, the defect remained untreated. The results were assessed within a year.Results In the experimental group, the animals had a significantly better range of motion at all stages of the experiment than the control animals. The implant ensured the integrity and congruence of the articular surface. On day 180, a newly formed area of the articular surface of the organotypic structure was observed in the defect. Biomechanical properties of the repaied zone restored after 60 days while in the control one they remained lower by 27-29 %.Discussion Filling the defect with an elastic implant made of polyprolactone with hydroxyapatite provided early functional load on the joint. The structure of the implant, simulating the extracellular matrix, promoted the growth, proliferation and directed differentiation of cells in the area of the osteochondral defect. The moderate rate of biodegradability of the material provided gradual replacement of the implant with organ-specific tissues.Conclusion A biodegradable polycaprolactone implant impregnated with hydroxyapatite particles might be effective for experimental osteochondral defect repair.\",\"PeriodicalId\":37426,\"journal\":{\"name\":\"Genij Ortopedii\",\"volume\":\"54 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genij Ortopedii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18019/1028-4427-2023-29-6-615-628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genij Ortopedii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18019/1028-4427-2023-29-6-615-628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Bioactive biodegradable polycaprolactone implant for management of osteochondral defects: an experimental study
Introducrion Repair of the affected articular surface still remains an unsolved problem.The purpose of this study was to assess the efficacy of a biodegradable polycaprolactone implant coated with hydroxyapatite on the healing of an osteochondral defect of the femoral condyle in rats.Materials and methods An osteochondral defect of the medial femoral condyle was modeled in 76 Wistar rats divided into 2 groups. In the experimental group, the defect was replaced with a biodegradable polycaprolactone membrane coated with hydroxyapatite. In the control group, the defect remained untreated. The results were assessed within a year.Results In the experimental group, the animals had a significantly better range of motion at all stages of the experiment than the control animals. The implant ensured the integrity and congruence of the articular surface. On day 180, a newly formed area of the articular surface of the organotypic structure was observed in the defect. Biomechanical properties of the repaied zone restored after 60 days while in the control one they remained lower by 27-29 %.Discussion Filling the defect with an elastic implant made of polyprolactone with hydroxyapatite provided early functional load on the joint. The structure of the implant, simulating the extracellular matrix, promoted the growth, proliferation and directed differentiation of cells in the area of the osteochondral defect. The moderate rate of biodegradability of the material provided gradual replacement of the implant with organ-specific tissues.Conclusion A biodegradable polycaprolactone implant impregnated with hydroxyapatite particles might be effective for experimental osteochondral defect repair.
期刊介绍:
Journal’s main goal is to contribute to the development of the contemporary medical science via presentation of fundamental and applied original scientific studies to the scientific and practical medical community that would widen and deepen the understanding of the most important problems in the field of traumatology, orthopaedics, and related specialties. Our journal provides a direct open access to its content which is based on the principle that the open access option promotes global exchange of knowledge and experience. Journal’s strategy: -Development of the journal as a scientific platform for researchers, doctors, post-graduates and residents -Attraction of highly-cited authors to publish their studies -Selection of manuscripts of scientific interest for readers that will impact on journal citation index in RINC -Increase in the portion of publications submitted by foreign authors and studies conducted in association with foreign scientists; growth of citations in the journals that are included into global systems of indexing and reputable databases -Improvement of the Journal’s web site in two languages for a greater accessibility by authors and readers -Introduction of the Journal into global indexing systems