利用解析性建模方案了解地中海的山地碳酸盐盆地

IF 5.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
S. Azimi, C. Massari, G. Formetta, S. Barbetta, A. Tazioli, Davide Fronzi, S. Modanesi, A. Tarpanelli, Riccardo Rigon
{"title":"利用解析性建模方案了解地中海的山地碳酸盐盆地","authors":"S. Azimi, C. Massari, G. Formetta, S. Barbetta, A. Tazioli, Davide Fronzi, S. Modanesi, A. Tarpanelli, Riccardo Rigon","doi":"10.5194/hess-27-4485-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The study aims to demonstrate that an effective solution can be implemented for modeling complex carbonate basins, in the situation of limited data availability. Considering the alternative modeling approaches under circumstances of data shortage is more significant knowing the vulnerability and effectiveness of these kinds of basins to drought and climate change conditions. In this regard, a hybrid approach that combines time series analysis and reservoir modeling is proposed to describe behavior in carbonate basins. Time series analysis estimates the contributing area and response time of the fractured carbonate system beyond the catchment's hydrographic boundaries. The results obtained align with previous literature-based field surveys. This information is then used to develop a conceptual reservoir system using the GEOframe modeling system. The model is validated using in situ discharge observations and Earth observations (EO) data on evapotranspiration and snow. Model reliability is assessed using traditional goodness of fit indicators, hydrological signatures, and a novel statistical method based on empirical conditional probability. This approach enables detailed analysis and investigation of water budget components in Mediterranean carbonate catchments, highlighting their response to significant precipitation deficits. Overall, our results demonstrate that flows from carbonate rock areas outside the hydrographic boundaries significantly impact the water budget of the upper Nera River. The storage capacity of the carbonate basin plays a crucial role in sustaining river discharge during drought years. In a single dry year, meteorological drought is considerably attenuated, while in subsequent dry years, it is slightly intensified. Multi-year droughts result in slower recovery due to the time required for precipitation to replenish the depleted storage that supported river discharge in previous dry years. This unique behavior makes these basins particularly vulnerable to the more severe and frequent drought episodes expected under future climate change.\n","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":"22 18","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions\",\"authors\":\"S. Azimi, C. Massari, G. Formetta, S. Barbetta, A. Tazioli, Davide Fronzi, S. Modanesi, A. Tarpanelli, Riccardo Rigon\",\"doi\":\"10.5194/hess-27-4485-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The study aims to demonstrate that an effective solution can be implemented for modeling complex carbonate basins, in the situation of limited data availability. Considering the alternative modeling approaches under circumstances of data shortage is more significant knowing the vulnerability and effectiveness of these kinds of basins to drought and climate change conditions. In this regard, a hybrid approach that combines time series analysis and reservoir modeling is proposed to describe behavior in carbonate basins. Time series analysis estimates the contributing area and response time of the fractured carbonate system beyond the catchment's hydrographic boundaries. The results obtained align with previous literature-based field surveys. This information is then used to develop a conceptual reservoir system using the GEOframe modeling system. The model is validated using in situ discharge observations and Earth observations (EO) data on evapotranspiration and snow. Model reliability is assessed using traditional goodness of fit indicators, hydrological signatures, and a novel statistical method based on empirical conditional probability. This approach enables detailed analysis and investigation of water budget components in Mediterranean carbonate catchments, highlighting their response to significant precipitation deficits. Overall, our results demonstrate that flows from carbonate rock areas outside the hydrographic boundaries significantly impact the water budget of the upper Nera River. The storage capacity of the carbonate basin plays a crucial role in sustaining river discharge during drought years. In a single dry year, meteorological drought is considerably attenuated, while in subsequent dry years, it is slightly intensified. Multi-year droughts result in slower recovery due to the time required for precipitation to replenish the depleted storage that supported river discharge in previous dry years. This unique behavior makes these basins particularly vulnerable to the more severe and frequent drought episodes expected under future climate change.\\n\",\"PeriodicalId\":13143,\"journal\":{\"name\":\"Hydrology and Earth System Sciences\",\"volume\":\"22 18\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology and Earth System Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/hess-27-4485-2023\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/hess-27-4485-2023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要该研究旨在证明,在数据有限的情况下,可以采用有效的解决方案对复杂的碳酸盐岩盆地进行建模。考虑到这类盆地在干旱和气候变化条件下的脆弱性和有效性,在数据短缺的情况下考虑其他建模方法意义重大。为此,提出了一种结合时间序列分析和水库建模的混合方法来描述碳酸盐岩盆地的行为。时间序列分析估算了集水区水文边界以外的断裂碳酸盐系统的贡献面积和响应时间。所获得的结果与之前基于文献的实地调查结果一致。然后,利用这些信息,使用 GEOframe 建模系统开发了一个概念性水库系统。利用原位排水观测数据以及蒸散和积雪的地球观测(EO)数据对模型进行验证。利用传统的拟合优度指标、水文特征和基于经验条件概率的新型统计方法对模型的可靠性进行了评估。通过这种方法,可以对地中海碳酸盐集水区的水预算成分进行详细分析和研究,突出它们对严重降水不足的反应。总之,我们的研究结果表明,来自水文边界以外碳酸盐岩地区的水流对内拉河上游的水量预算产生了重大影响。碳酸盐岩盆地的蓄水能力在干旱年份对维持河流排泄量起着至关重要的作用。在单一干旱年份,气象干旱会大大减弱,而在随后的干旱年份,干旱会略有加剧。由于降水需要一定的时间来补充在之前的干旱年份中支持河流泄洪的枯竭蓄水,因此多年干旱导致恢复较慢。这种独特的行为使这些流域特别容易受到未来气候变化下更严重、更频繁的干旱的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Abstract. The study aims to demonstrate that an effective solution can be implemented for modeling complex carbonate basins, in the situation of limited data availability. Considering the alternative modeling approaches under circumstances of data shortage is more significant knowing the vulnerability and effectiveness of these kinds of basins to drought and climate change conditions. In this regard, a hybrid approach that combines time series analysis and reservoir modeling is proposed to describe behavior in carbonate basins. Time series analysis estimates the contributing area and response time of the fractured carbonate system beyond the catchment's hydrographic boundaries. The results obtained align with previous literature-based field surveys. This information is then used to develop a conceptual reservoir system using the GEOframe modeling system. The model is validated using in situ discharge observations and Earth observations (EO) data on evapotranspiration and snow. Model reliability is assessed using traditional goodness of fit indicators, hydrological signatures, and a novel statistical method based on empirical conditional probability. This approach enables detailed analysis and investigation of water budget components in Mediterranean carbonate catchments, highlighting their response to significant precipitation deficits. Overall, our results demonstrate that flows from carbonate rock areas outside the hydrographic boundaries significantly impact the water budget of the upper Nera River. The storage capacity of the carbonate basin plays a crucial role in sustaining river discharge during drought years. In a single dry year, meteorological drought is considerably attenuated, while in subsequent dry years, it is slightly intensified. Multi-year droughts result in slower recovery due to the time required for precipitation to replenish the depleted storage that supported river discharge in previous dry years. This unique behavior makes these basins particularly vulnerable to the more severe and frequent drought episodes expected under future climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrology and Earth System Sciences
Hydrology and Earth System Sciences 地学-地球科学综合
CiteScore
10.10
自引率
7.90%
发文量
273
审稿时长
15 months
期刊介绍: Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信