Widyastuti Widyastuti, R. Wahyuono, R. Fajarin, S. Sulistijono, Arif Nur Hakim, Lilis Mariani, Herry Purnomo, Ibrahim Fatahillah Hizbul Islam
{"title":"使用钇稳定氧化锆 (YSZ) 在哈氏合金 C276 上进行极端温度下的低反射损耗热障涂层,用于无线电遥控火箭喷嘴鼻锥","authors":"Widyastuti Widyastuti, R. Wahyuono, R. Fajarin, S. Sulistijono, Arif Nur Hakim, Lilis Mariani, Herry Purnomo, Ibrahim Fatahillah Hizbul Islam","doi":"10.4028/p-fNGYk1","DOIUrl":null,"url":null,"abstract":"The nosecone tip during the launch process becomes the first part that experiences friction against the atmosphere so that heat is generated, which continues to increase over time. Therefore, the nosecone tip material must have high-temperature resistance, and the materials used must not interfere with the avionics and telemetry systems of the rocket. When the sounding rocket orbits at an altitude of 200-300 Km, the atmospheric environmental conditions also fluctuate, so the nose cone tip must also be able to adapt to this condition. The end of the nose cone must be protected with a high heat-resistant Thermal Barrier Coating (TBC) coating using Yttria Stabilized Zirconia (YSZ). YSZ modified with Al2O3 has impressive performance against high thermal by increasing the temperature resistance of the substrate to about 1200°C. In this paper, the experiment done for the first time using Hastelloy C276 coated with YSZ with thermal spray method has shown good performance. The pull of test results shows the highest bond tensile strength after heat exposure value at 23,04 MPa. And the thermal torch testing resulted in mass decreasing by 0.493 grams at 1200°C. The vector analyser also offers good performance reflection loss, valued at -0.324 dB at 10 GHz, and the thermal gravimetry of the material tip nose is 93,2% at 1200°C.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"18 11","pages":"49 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Reflection-Loss Thermal Barrier Coating on Hastelloy C276 for Radio Control Rocket Tip Nosecone Using Yttria-Stabilized Zirconia (YSZ) at Extreme Temperature\",\"authors\":\"Widyastuti Widyastuti, R. Wahyuono, R. Fajarin, S. Sulistijono, Arif Nur Hakim, Lilis Mariani, Herry Purnomo, Ibrahim Fatahillah Hizbul Islam\",\"doi\":\"10.4028/p-fNGYk1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nosecone tip during the launch process becomes the first part that experiences friction against the atmosphere so that heat is generated, which continues to increase over time. Therefore, the nosecone tip material must have high-temperature resistance, and the materials used must not interfere with the avionics and telemetry systems of the rocket. When the sounding rocket orbits at an altitude of 200-300 Km, the atmospheric environmental conditions also fluctuate, so the nose cone tip must also be able to adapt to this condition. The end of the nose cone must be protected with a high heat-resistant Thermal Barrier Coating (TBC) coating using Yttria Stabilized Zirconia (YSZ). YSZ modified with Al2O3 has impressive performance against high thermal by increasing the temperature resistance of the substrate to about 1200°C. In this paper, the experiment done for the first time using Hastelloy C276 coated with YSZ with thermal spray method has shown good performance. The pull of test results shows the highest bond tensile strength after heat exposure value at 23,04 MPa. And the thermal torch testing resulted in mass decreasing by 0.493 grams at 1200°C. The vector analyser also offers good performance reflection loss, valued at -0.324 dB at 10 GHz, and the thermal gravimetry of the material tip nose is 93,2% at 1200°C.\",\"PeriodicalId\":21754,\"journal\":{\"name\":\"Solid State Phenomena\",\"volume\":\"18 11\",\"pages\":\"49 - 60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-fNGYk1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-fNGYk1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Reflection-Loss Thermal Barrier Coating on Hastelloy C276 for Radio Control Rocket Tip Nosecone Using Yttria-Stabilized Zirconia (YSZ) at Extreme Temperature
The nosecone tip during the launch process becomes the first part that experiences friction against the atmosphere so that heat is generated, which continues to increase over time. Therefore, the nosecone tip material must have high-temperature resistance, and the materials used must not interfere with the avionics and telemetry systems of the rocket. When the sounding rocket orbits at an altitude of 200-300 Km, the atmospheric environmental conditions also fluctuate, so the nose cone tip must also be able to adapt to this condition. The end of the nose cone must be protected with a high heat-resistant Thermal Barrier Coating (TBC) coating using Yttria Stabilized Zirconia (YSZ). YSZ modified with Al2O3 has impressive performance against high thermal by increasing the temperature resistance of the substrate to about 1200°C. In this paper, the experiment done for the first time using Hastelloy C276 coated with YSZ with thermal spray method has shown good performance. The pull of test results shows the highest bond tensile strength after heat exposure value at 23,04 MPa. And the thermal torch testing resulted in mass decreasing by 0.493 grams at 1200°C. The vector analyser also offers good performance reflection loss, valued at -0.324 dB at 10 GHz, and the thermal gravimetry of the material tip nose is 93,2% at 1200°C.