关于同质贝索夫空间中微波流体方程正则性准则的说明

Q4 Mathematics
Qiang Li, Mianlu Zou
{"title":"关于同质贝索夫空间中微波流体方程正则性准则的说明","authors":"Qiang Li, Mianlu Zou","doi":"10.53733/315","DOIUrl":null,"url":null,"abstract":"This paper gives a further investigation on the regularity criteria for three-dimensional micropolar equations in Besov spaces. More precisely, it is proved that the weak solution $(u, \\omega)$ is regular if the velocity $u$ satisfies\n$$\\int_{0}^{T}\\| \\nabla_{h}u_{h}\\|_{\\dot{B}_{p,\\frac{2p}{3}}^{0}}^{q} d t<\\infty,\\ with\\ \\ \\frac{3}{p}+\\frac{2}{q}=2,\\ \\frac{3}{2}<p\\leq\\infty,$$or $$\\int_{0}^{T}\\| \\nabla_{h}u\\|_{\\dot{B}_{\\infty ,\\infty}^{-1}}^{\\frac{8}{3}} d t<\\infty,$$or $$\\int_{0}^{T}\\|\\nabla_{h} u_{h}\\|_{\\dot{B}_{\\infty,\\infty}^{-\\alpha}}^{\\frac{2}{2-\\alpha}} d t<\\infty,\\ with\\ 0< \\alpha< 1. $$","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"note on the regularity criterion for the micropolar fluid equations in homogeneous Besov spaces\",\"authors\":\"Qiang Li, Mianlu Zou\",\"doi\":\"10.53733/315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a further investigation on the regularity criteria for three-dimensional micropolar equations in Besov spaces. More precisely, it is proved that the weak solution $(u, \\\\omega)$ is regular if the velocity $u$ satisfies\\n$$\\\\int_{0}^{T}\\\\| \\\\nabla_{h}u_{h}\\\\|_{\\\\dot{B}_{p,\\\\frac{2p}{3}}^{0}}^{q} d t<\\\\infty,\\\\ with\\\\ \\\\ \\\\frac{3}{p}+\\\\frac{2}{q}=2,\\\\ \\\\frac{3}{2}<p\\\\leq\\\\infty,$$or $$\\\\int_{0}^{T}\\\\| \\\\nabla_{h}u\\\\|_{\\\\dot{B}_{\\\\infty ,\\\\infty}^{-1}}^{\\\\frac{8}{3}} d t<\\\\infty,$$or $$\\\\int_{0}^{T}\\\\|\\\\nabla_{h} u_{h}\\\\|_{\\\\dot{B}_{\\\\infty,\\\\infty}^{-\\\\alpha}}^{\\\\frac{2}{2-\\\\alpha}} d t<\\\\infty,\\\\ with\\\\ 0< \\\\alpha< 1. $$\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文进一步研究了贝索夫空间中三维微极方程的正则性准则。更确切地说,如果速度 $u$ 满足$$\int_{0}^{T}\| \nabla_{h}u_{h}\|_{\dot{B}_{p,\frac{2p}{3}}^{0}^{q} d t<\infty,\ with\ \frac{3}{p}+\frac{2}{q}=2, 则证明弱解 $(u, \omega)$ 是正则的、\frac{3}{2}本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
note on the regularity criterion for the micropolar fluid equations in homogeneous Besov spaces
This paper gives a further investigation on the regularity criteria for three-dimensional micropolar equations in Besov spaces. More precisely, it is proved that the weak solution $(u, \omega)$ is regular if the velocity $u$ satisfies $$\int_{0}^{T}\| \nabla_{h}u_{h}\|_{\dot{B}_{p,\frac{2p}{3}}^{0}}^{q} d t<\infty,\ with\ \ \frac{3}{p}+\frac{2}{q}=2,\ \frac{3}{2}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信