用于土壤温度预测的可解释时空模型

IF 2.7 3区 农林科学 Q2 ECOLOGY
Xiaoning Li, Yuheng Zhu, Qingliang Li, Hongwei Zhao, Jinlong Zhu, Cheng Zhang
{"title":"用于土壤温度预测的可解释时空模型","authors":"Xiaoning Li, Yuheng Zhu, Qingliang Li, Hongwei Zhao, Jinlong Zhu, Cheng Zhang","doi":"10.3389/ffgc.2023.1295731","DOIUrl":null,"url":null,"abstract":"Soil temperature (ST) is a crucial parameter in Earth system science. Accurate ST predictions provide invaluable insights; however, the “black box” nature of many deep learning approaches limits their interpretability. In this study, we present the Encoder-Decoder Model with Interpretable Spatio-Temporal Component (ISDNM) to enhance both ST prediction accuracy and its spatio-temporal interpretability. The ISDNM combines a CNN-encoder-decoder and an LSTM-encoder-decoder to improve spatio-temporal feature representation. It further uses linear regression and Uniform Manifold Approximation and Projection (UMAP) techniques for clearer spatio-temporal visualization of ST. The results show that the ISDNM model had the highest R2 ranging from 0.886 to 0.963 and the lowest RMSE ranging from 6.086 m3/m3 to 12.533 m3/m3 for different climate regions, and demonstrated superior performance than all the other DL models like CNN, LSTM, ConvLSTM models. The predictable component highlighted the remarkable similarity between Medium fine and Very fine soils in China. Additional, May and November emerged as crucial months, acting as inflection points in the annual ST cycle, shaping ISDNM model’s prediction capabilities.","PeriodicalId":12538,"journal":{"name":"Frontiers in Forests and Global Change","volume":"139 51","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable spatio-temporal modeling for soil temperature prediction\",\"authors\":\"Xiaoning Li, Yuheng Zhu, Qingliang Li, Hongwei Zhao, Jinlong Zhu, Cheng Zhang\",\"doi\":\"10.3389/ffgc.2023.1295731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil temperature (ST) is a crucial parameter in Earth system science. Accurate ST predictions provide invaluable insights; however, the “black box” nature of many deep learning approaches limits their interpretability. In this study, we present the Encoder-Decoder Model with Interpretable Spatio-Temporal Component (ISDNM) to enhance both ST prediction accuracy and its spatio-temporal interpretability. The ISDNM combines a CNN-encoder-decoder and an LSTM-encoder-decoder to improve spatio-temporal feature representation. It further uses linear regression and Uniform Manifold Approximation and Projection (UMAP) techniques for clearer spatio-temporal visualization of ST. The results show that the ISDNM model had the highest R2 ranging from 0.886 to 0.963 and the lowest RMSE ranging from 6.086 m3/m3 to 12.533 m3/m3 for different climate regions, and demonstrated superior performance than all the other DL models like CNN, LSTM, ConvLSTM models. The predictable component highlighted the remarkable similarity between Medium fine and Very fine soils in China. Additional, May and November emerged as crucial months, acting as inflection points in the annual ST cycle, shaping ISDNM model’s prediction capabilities.\",\"PeriodicalId\":12538,\"journal\":{\"name\":\"Frontiers in Forests and Global Change\",\"volume\":\"139 51\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Forests and Global Change\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3389/ffgc.2023.1295731\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Forests and Global Change","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/ffgc.2023.1295731","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

土壤温度(ST)是地球系统科学中的一个重要参数。准确的土壤温度预测可提供宝贵的见解;然而,许多深度学习方法的 "黑箱 "性质限制了它们的可解释性。在本研究中,我们提出了具有可解释时空成分的编码器-解码器模型(ISDNM),以提高土壤预测的准确性及其时空可解释性。ISDNM 结合了 CNN 编码器-解码器和 LSTM 编码器-解码器,以改进时空特征表示。它进一步使用线性回归和统一曲面逼近与投影(UMAP)技术,使 ST 的时空可视化更加清晰。结果表明,对于不同气候区域,ISDNM 模型的 R2 最高,从 0.886 到 0.963 不等,RMSE 最低,从 6.086 m3/m3 到 12.533 m3/m3 不等,表现优于所有其他 DL 模型,如 CNN、LSTM 和 ConvLSTM 模型。可预测成分凸显了中国中细土和极细土之间的显著相似性。此外,5 月和 11 月是关键月份,是 ST 年周期的拐点,影响着 ISDNM 模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable spatio-temporal modeling for soil temperature prediction
Soil temperature (ST) is a crucial parameter in Earth system science. Accurate ST predictions provide invaluable insights; however, the “black box” nature of many deep learning approaches limits their interpretability. In this study, we present the Encoder-Decoder Model with Interpretable Spatio-Temporal Component (ISDNM) to enhance both ST prediction accuracy and its spatio-temporal interpretability. The ISDNM combines a CNN-encoder-decoder and an LSTM-encoder-decoder to improve spatio-temporal feature representation. It further uses linear regression and Uniform Manifold Approximation and Projection (UMAP) techniques for clearer spatio-temporal visualization of ST. The results show that the ISDNM model had the highest R2 ranging from 0.886 to 0.963 and the lowest RMSE ranging from 6.086 m3/m3 to 12.533 m3/m3 for different climate regions, and demonstrated superior performance than all the other DL models like CNN, LSTM, ConvLSTM models. The predictable component highlighted the remarkable similarity between Medium fine and Very fine soils in China. Additional, May and November emerged as crucial months, acting as inflection points in the annual ST cycle, shaping ISDNM model’s prediction capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
6.20%
发文量
256
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信