反铲液压挖掘机的动态挖掘力建模和比较分析

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Tianyu Li, Zhigui Ren, Xiaoping Pang, Dingjun Chen, Shusheng Cao
{"title":"反铲液压挖掘机的动态挖掘力建模和比较分析","authors":"Tianyu Li, Zhigui Ren, Xiaoping Pang, Dingjun Chen, Shusheng Cao","doi":"10.1088/1361-6501/ad1814","DOIUrl":null,"url":null,"abstract":"\n The evaluation of excavator performance relies heavily on digging force, which serves as a crucial indicator. However, the accuracy of performance assessment is hindered by the absence of a suitable method to characterize the dynamic digging capacity of excavators. This study addresses this limitation by proposing an approach to establish a set of solution-limited inequalities for dynamic digging force. The approach incorporates D'Alembert's principle and composite digging, while considering the influence of inertia force. Furthermore, to mitigate the issue of bucket tooth tip trajectory shaking caused by discontinuous posture during excavation, an amount of measurement data from a 20-ton machine is utilized to construct a consistent theoretical digging trajectory. The theoretical trajectory is subjected to numerical verification to determine the dynamic digging force along the trajectory. A comparative analysis is then conducted, contrasting the obtained dynamic digging force with different theoretical digging forces and measured resistances. Additionally, the dynamic digging forces within the selected digging area of the machine are characterized, without accounting for attitude continuity. The findings demonstrate that the dynamic digging force effectively captures the excavator's performance along the trajectory, and it also provides an excellent characterization of the digging force at discrete digging spots.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"58 20","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic digging force modeling and comparative analysis of backhoe hydraulic excavators\",\"authors\":\"Tianyu Li, Zhigui Ren, Xiaoping Pang, Dingjun Chen, Shusheng Cao\",\"doi\":\"10.1088/1361-6501/ad1814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The evaluation of excavator performance relies heavily on digging force, which serves as a crucial indicator. However, the accuracy of performance assessment is hindered by the absence of a suitable method to characterize the dynamic digging capacity of excavators. This study addresses this limitation by proposing an approach to establish a set of solution-limited inequalities for dynamic digging force. The approach incorporates D'Alembert's principle and composite digging, while considering the influence of inertia force. Furthermore, to mitigate the issue of bucket tooth tip trajectory shaking caused by discontinuous posture during excavation, an amount of measurement data from a 20-ton machine is utilized to construct a consistent theoretical digging trajectory. The theoretical trajectory is subjected to numerical verification to determine the dynamic digging force along the trajectory. A comparative analysis is then conducted, contrasting the obtained dynamic digging force with different theoretical digging forces and measured resistances. Additionally, the dynamic digging forces within the selected digging area of the machine are characterized, without accounting for attitude continuity. The findings demonstrate that the dynamic digging force effectively captures the excavator's performance along the trajectory, and it also provides an excellent characterization of the digging force at discrete digging spots.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"58 20\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1814\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1814","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

挖掘机性能的评估在很大程度上依赖于作为关键指标的挖掘力。然而,由于没有合适的方法来描述挖掘机的动态挖掘能力,性能评估的准确性受到了影响。本研究针对这一局限性,提出了一种建立动态挖掘力有限解不等式集的方法。该方法结合了达朗贝尔原理和复合挖掘,同时考虑了惯性力的影响。此外,为缓解挖掘过程中不连续姿势造成的斗齿尖端轨迹晃动问题,利用一台 20 吨机器的大量测量数据构建了一致的理论挖掘轨迹。对理论轨迹进行数值验证,以确定沿轨迹的动态挖掘力。然后进行比较分析,将获得的动态挖掘力与不同的理论挖掘力和测量阻力进行对比。此外,在不考虑姿态连续性的情况下,还对机器选定挖掘区域内的动态挖掘力进行了表征。研究结果表明,动态挖掘力能有效捕捉挖掘机沿轨迹的性能,还能很好地描述离散挖掘点的挖掘力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic digging force modeling and comparative analysis of backhoe hydraulic excavators
The evaluation of excavator performance relies heavily on digging force, which serves as a crucial indicator. However, the accuracy of performance assessment is hindered by the absence of a suitable method to characterize the dynamic digging capacity of excavators. This study addresses this limitation by proposing an approach to establish a set of solution-limited inequalities for dynamic digging force. The approach incorporates D'Alembert's principle and composite digging, while considering the influence of inertia force. Furthermore, to mitigate the issue of bucket tooth tip trajectory shaking caused by discontinuous posture during excavation, an amount of measurement data from a 20-ton machine is utilized to construct a consistent theoretical digging trajectory. The theoretical trajectory is subjected to numerical verification to determine the dynamic digging force along the trajectory. A comparative analysis is then conducted, contrasting the obtained dynamic digging force with different theoretical digging forces and measured resistances. Additionally, the dynamic digging forces within the selected digging area of the machine are characterized, without accounting for attitude continuity. The findings demonstrate that the dynamic digging force effectively captures the excavator's performance along the trajectory, and it also provides an excellent characterization of the digging force at discrete digging spots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信