{"title":"达卡市布里根加河分离出的细菌对六价铬的生物修复作用","authors":"SM Osail, SI Sanny, MS Kabir","doi":"10.3329/sjm.v13i1.70411","DOIUrl":null,"url":null,"abstract":"Environmental pollution due to hexavalent chromium (Cr6+) is widespread because of the anthropogenic activities in various industrial processes, notably in leather tanning. Hexavalent chromium (Cr6+) is considered as highly toxic, carcinogenic, and mutagenic due to its high solubility in water, interaction with cellular proteins, and biological membrane permeability. Trivalent chromium (Cr3+), on the other hand, is less water-soluble, and relatively benign in nature. Thus, bioreduction of toxic Cr6+ to relatively non-toxic Cr3+ by microorganisms can be an inexpensive and eco-friendly option for chromium bioremediation. In this regard, the present study attempted to isolate chromium-reducing bacteria from Buriganga River in order to assess their capability for chromium bioremediation. Ten chromium-tolerating bacterial isolates were successfully identified. The results revealed that these isolates, particularly strains of Bacillus subtilis, exhibited a remarkable ability to remove up to 89% of hexavalent chromium from the contaminated medium within three days of incubation. \nStamford Journal of Microbiology, 2023. Vol. 13, Issue 1, p. 25-29","PeriodicalId":170445,"journal":{"name":"Stamford Journal of Microbiology","volume":"34 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation of Hexavalent Chromium By Bacteria Isolated From Buriganga River, Dhaka City\",\"authors\":\"SM Osail, SI Sanny, MS Kabir\",\"doi\":\"10.3329/sjm.v13i1.70411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental pollution due to hexavalent chromium (Cr6+) is widespread because of the anthropogenic activities in various industrial processes, notably in leather tanning. Hexavalent chromium (Cr6+) is considered as highly toxic, carcinogenic, and mutagenic due to its high solubility in water, interaction with cellular proteins, and biological membrane permeability. Trivalent chromium (Cr3+), on the other hand, is less water-soluble, and relatively benign in nature. Thus, bioreduction of toxic Cr6+ to relatively non-toxic Cr3+ by microorganisms can be an inexpensive and eco-friendly option for chromium bioremediation. In this regard, the present study attempted to isolate chromium-reducing bacteria from Buriganga River in order to assess their capability for chromium bioremediation. Ten chromium-tolerating bacterial isolates were successfully identified. The results revealed that these isolates, particularly strains of Bacillus subtilis, exhibited a remarkable ability to remove up to 89% of hexavalent chromium from the contaminated medium within three days of incubation. \\nStamford Journal of Microbiology, 2023. Vol. 13, Issue 1, p. 25-29\",\"PeriodicalId\":170445,\"journal\":{\"name\":\"Stamford Journal of Microbiology\",\"volume\":\"34 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stamford Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/sjm.v13i1.70411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stamford Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/sjm.v13i1.70411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioremediation of Hexavalent Chromium By Bacteria Isolated From Buriganga River, Dhaka City
Environmental pollution due to hexavalent chromium (Cr6+) is widespread because of the anthropogenic activities in various industrial processes, notably in leather tanning. Hexavalent chromium (Cr6+) is considered as highly toxic, carcinogenic, and mutagenic due to its high solubility in water, interaction with cellular proteins, and biological membrane permeability. Trivalent chromium (Cr3+), on the other hand, is less water-soluble, and relatively benign in nature. Thus, bioreduction of toxic Cr6+ to relatively non-toxic Cr3+ by microorganisms can be an inexpensive and eco-friendly option for chromium bioremediation. In this regard, the present study attempted to isolate chromium-reducing bacteria from Buriganga River in order to assess their capability for chromium bioremediation. Ten chromium-tolerating bacterial isolates were successfully identified. The results revealed that these isolates, particularly strains of Bacillus subtilis, exhibited a remarkable ability to remove up to 89% of hexavalent chromium from the contaminated medium within three days of incubation.
Stamford Journal of Microbiology, 2023. Vol. 13, Issue 1, p. 25-29