Rafael Cabral Fernandez, Kelly Cristina Mota Gonçalves, João Batista de Morais Pereira
{"title":"用于地形数据的灵活贝叶斯分层量化空间模型","authors":"Rafael Cabral Fernandez, Kelly Cristina Mota Gonçalves, João Batista de Morais Pereira","doi":"10.1177/1471082x231204930","DOIUrl":null,"url":null,"abstract":"This article introduces a new class of nested models that extends the literature standard combination of spatial autoregressive model for areal data with parametric quantile regression by considering an asymmetric Laplace distribution for the random errors. In addition to being more flexible, the new proposed model can incorporate a hierarchical structure, allowing it to deal with clustered data. Such an approach produces a robust statistical method for modeling the quantiles of areal data distributed in a geographically hierarchical setting. The proposed non-hierarchical model is evaluated using a wellknown house pricing dataset and a simulation study. In addition, its hierarchical version is applied to a real dataset of math scores related to public high schools within the metropolitan area of Rio de Janeiro, Brazil.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexible Bayesian hierarchical quantile spatial model for areal data\",\"authors\":\"Rafael Cabral Fernandez, Kelly Cristina Mota Gonçalves, João Batista de Morais Pereira\",\"doi\":\"10.1177/1471082x231204930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a new class of nested models that extends the literature standard combination of spatial autoregressive model for areal data with parametric quantile regression by considering an asymmetric Laplace distribution for the random errors. In addition to being more flexible, the new proposed model can incorporate a hierarchical structure, allowing it to deal with clustered data. Such an approach produces a robust statistical method for modeling the quantiles of areal data distributed in a geographically hierarchical setting. The proposed non-hierarchical model is evaluated using a wellknown house pricing dataset and a simulation study. In addition, its hierarchical version is applied to a real dataset of math scores related to public high schools within the metropolitan area of Rio de Janeiro, Brazil.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082x231204930\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x231204930","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A flexible Bayesian hierarchical quantile spatial model for areal data
This article introduces a new class of nested models that extends the literature standard combination of spatial autoregressive model for areal data with parametric quantile regression by considering an asymmetric Laplace distribution for the random errors. In addition to being more flexible, the new proposed model can incorporate a hierarchical structure, allowing it to deal with clustered data. Such an approach produces a robust statistical method for modeling the quantiles of areal data distributed in a geographically hierarchical setting. The proposed non-hierarchical model is evaluated using a wellknown house pricing dataset and a simulation study. In addition, its hierarchical version is applied to a real dataset of math scores related to public high schools within the metropolitan area of Rio de Janeiro, Brazil.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.