设计具有零电流切换功能的总线式电池均衡器

Zhao Xin, Li Kun
{"title":"设计具有零电流切换功能的总线式电池均衡器","authors":"Zhao Xin, Li Kun","doi":"10.1177/00202940231196557","DOIUrl":null,"url":null,"abstract":"A novel any cell to any cell equalization circuit topology with small column, low weight, low cost, and high efficiency is proposed for serial-connected batteries, especially suitable for unmanned aerial vehicles, satellites, and other fields with strict requirements on size, weight, reliability, and safety. To solve the problems of high switching losses in equalization circuits and low reliability of complex control schemes. A half-bridge circuit to convert the DC voltage of the battery into AC voltage is employed, and the energy is exchanged autonomously via the bus. At the same time, LC resonant circuit is used to achieve zero-current switching of the MOSFET, thus reduces greatly the switching losses. The working principle is analyzed by theoretical derivation, and the parameters of the circuit are optimized through circuit simulation. Furthermore, experiments which support six cells equalization are carried out to verify the feasibility and advantage of this topology. This equalization uses a bus-type architecture to improve equalization efficiency and topological flexibility making it even more valuable in the industrial and aerospace fields.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"38 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a bus-based battery equalization with zero-current switching\",\"authors\":\"Zhao Xin, Li Kun\",\"doi\":\"10.1177/00202940231196557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel any cell to any cell equalization circuit topology with small column, low weight, low cost, and high efficiency is proposed for serial-connected batteries, especially suitable for unmanned aerial vehicles, satellites, and other fields with strict requirements on size, weight, reliability, and safety. To solve the problems of high switching losses in equalization circuits and low reliability of complex control schemes. A half-bridge circuit to convert the DC voltage of the battery into AC voltage is employed, and the energy is exchanged autonomously via the bus. At the same time, LC resonant circuit is used to achieve zero-current switching of the MOSFET, thus reduces greatly the switching losses. The working principle is analyzed by theoretical derivation, and the parameters of the circuit are optimized through circuit simulation. Furthermore, experiments which support six cells equalization are carried out to verify the feasibility and advantage of this topology. This equalization uses a bus-type architecture to improve equalization efficiency and topological flexibility making it even more valuable in the industrial and aerospace fields.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"38 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231196557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231196557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对串联电池提出了一种新型任意电池对任意电池均衡电路拓扑结构,具有柱体小、重量轻、成本低、效率高等特点,尤其适用于对尺寸、重量、可靠性和安全性有严格要求的无人机、卫星等领域。解决均衡电路开关损耗大、复杂控制方案可靠性低的问题。采用半桥电路将电池的直流电压转换为交流电压,并通过总线自主进行能量交换。同时,采用 LC 谐振电路实现 MOSFET 的零电流开关,从而大大降低了开关损耗。通过理论推导分析了工作原理,并通过电路仿真优化了电路参数。此外,还进行了支持六单元均衡的实验,以验证这种拓扑结构的可行性和优势。这种均衡采用总线型结构,提高了均衡效率和拓扑灵活性,在工业和航空航天领域更有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a bus-based battery equalization with zero-current switching
A novel any cell to any cell equalization circuit topology with small column, low weight, low cost, and high efficiency is proposed for serial-connected batteries, especially suitable for unmanned aerial vehicles, satellites, and other fields with strict requirements on size, weight, reliability, and safety. To solve the problems of high switching losses in equalization circuits and low reliability of complex control schemes. A half-bridge circuit to convert the DC voltage of the battery into AC voltage is employed, and the energy is exchanged autonomously via the bus. At the same time, LC resonant circuit is used to achieve zero-current switching of the MOSFET, thus reduces greatly the switching losses. The working principle is analyzed by theoretical derivation, and the parameters of the circuit are optimized through circuit simulation. Furthermore, experiments which support six cells equalization are carried out to verify the feasibility and advantage of this topology. This equalization uses a bus-type architecture to improve equalization efficiency and topological flexibility making it even more valuable in the industrial and aerospace fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信