David Kwesi Abebrese, Recep Serdar Kara, K. Báťková, J. K. M. Biney, S. Matula
{"title":"评估不同耕作制度对捷克共和国不同田间条件下淤泥质粘壤土某些物理和化学特性的影响","authors":"David Kwesi Abebrese, Recep Serdar Kara, K. Báťková, J. K. M. Biney, S. Matula","doi":"10.1111/sum.13007","DOIUrl":null,"url":null,"abstract":"Under the recent water‐limiting crisis on farmlands in the Czech Republic, more sustainable approaches to improve water infiltration and suction within the soil layer useful for plant growth is crucial. This study sought to explore changes induced by applied tillage system, and time after tillage (considering two field conditions; at crop maturity when the soil had consolidated long after tillage, and after tillage and seeding operations). The tillage systems investigated were reduced tillage (RT), occasional tillage (OT), no tillage (NT) and conventional tillage (CT). Soil properties at 0 – 30 cm depth analyzed were dry bulk density, soil organic matter content, saturated volumetric water content and saturated hydraulic conductivity. After the tillage and seeding operations, soil organic matter increased on all conservation tillage plots (RT, OT and NT) but decreased under CT. Insignificant changes in dry bulk density were observed on the conservation tillage plots whereas CT reduced dry bulk density by 15.3%. Saturated hydraulic conductivity fluctuated significantly under OT and CT, while remaining stable under RT and NT. Generally, significant variability in organic matter influenced changes in saturated volumetric water content and saturated hydraulic conductivity. Changes in dry bulk density on all the tilled plots (RT, OT, and CT) did not show any significant relationship with saturated volumetric water content. Likewise, no significant relationship between changes in bulk density and saturated hydraulic conductivity on all plots were observed. While organic matter improvements under OT positively correlated with saturated volumetric water content, its seasonal dynamics under saturated hydraulic conductivity can be further studied. CT causes high instabilities in both saturated volumetric water content and saturated hydraulic conductivity leading to impaired characteristics during the soil's consolidated state.","PeriodicalId":21759,"journal":{"name":"Soil Use and Management","volume":"28 12","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the effects of different tillage systems on selected physical and chemical properties of a silty clay loam soil under different field conditions in the Czech Republic\",\"authors\":\"David Kwesi Abebrese, Recep Serdar Kara, K. Báťková, J. K. M. Biney, S. Matula\",\"doi\":\"10.1111/sum.13007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the recent water‐limiting crisis on farmlands in the Czech Republic, more sustainable approaches to improve water infiltration and suction within the soil layer useful for plant growth is crucial. This study sought to explore changes induced by applied tillage system, and time after tillage (considering two field conditions; at crop maturity when the soil had consolidated long after tillage, and after tillage and seeding operations). The tillage systems investigated were reduced tillage (RT), occasional tillage (OT), no tillage (NT) and conventional tillage (CT). Soil properties at 0 – 30 cm depth analyzed were dry bulk density, soil organic matter content, saturated volumetric water content and saturated hydraulic conductivity. After the tillage and seeding operations, soil organic matter increased on all conservation tillage plots (RT, OT and NT) but decreased under CT. Insignificant changes in dry bulk density were observed on the conservation tillage plots whereas CT reduced dry bulk density by 15.3%. Saturated hydraulic conductivity fluctuated significantly under OT and CT, while remaining stable under RT and NT. Generally, significant variability in organic matter influenced changes in saturated volumetric water content and saturated hydraulic conductivity. Changes in dry bulk density on all the tilled plots (RT, OT, and CT) did not show any significant relationship with saturated volumetric water content. Likewise, no significant relationship between changes in bulk density and saturated hydraulic conductivity on all plots were observed. While organic matter improvements under OT positively correlated with saturated volumetric water content, its seasonal dynamics under saturated hydraulic conductivity can be further studied. CT causes high instabilities in both saturated volumetric water content and saturated hydraulic conductivity leading to impaired characteristics during the soil's consolidated state.\",\"PeriodicalId\":21759,\"journal\":{\"name\":\"Soil Use and Management\",\"volume\":\"28 12\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Use and Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/sum.13007\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Use and Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/sum.13007","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
在捷克共和国农田近期的限水危机下,采用更具可持续性的方法来改善土壤层中有利于植物生长的水分渗透和吸力至关重要。本研究试图探讨应用耕作制度和耕作后时间所引起的变化(考虑两种田间条件:耕作后土壤长期固结的作物成熟期,以及耕作和播种作业后)。调查的耕作制度包括减少耕作(RT)、偶尔耕作(OT)、不耕作(NT)和传统耕作(CT)。分析的 0 - 30 厘米深度的土壤特性包括干容重、土壤有机质含量、饱和体积水含量和饱和导水率。翻耕和播种作业后,所有保护性耕作地块(RT、OT 和 NT)的土壤有机质都有所增加,但 CT 地块的土壤有机质则有所减少。保护性耕作地块的干容重变化不大,而 CT 地块的干容重降低了 15.3%。饱和导水率在 OT 和 CT 下波动明显,而在 RT 和 NT 下保持稳定。一般来说,有机质的显著变化会影响饱和容积含水量和饱和导水率的变化。所有翻耕地块(RT、OT 和 CT)的干容重变化与饱和容积含水量没有明显关系。同样,所有地块的容重变化与饱和导水性之间也没有明显关系。虽然 OT 条件下有机质的改善与饱和容积含水量呈正相关,但其在饱和导水率条件下的季节动态仍有待进一步研究。CT 会导致饱和容积含水量和饱和导水率的高度不稳定性,从而损害土壤固结状态下的特性。
Assessing the effects of different tillage systems on selected physical and chemical properties of a silty clay loam soil under different field conditions in the Czech Republic
Under the recent water‐limiting crisis on farmlands in the Czech Republic, more sustainable approaches to improve water infiltration and suction within the soil layer useful for plant growth is crucial. This study sought to explore changes induced by applied tillage system, and time after tillage (considering two field conditions; at crop maturity when the soil had consolidated long after tillage, and after tillage and seeding operations). The tillage systems investigated were reduced tillage (RT), occasional tillage (OT), no tillage (NT) and conventional tillage (CT). Soil properties at 0 – 30 cm depth analyzed were dry bulk density, soil organic matter content, saturated volumetric water content and saturated hydraulic conductivity. After the tillage and seeding operations, soil organic matter increased on all conservation tillage plots (RT, OT and NT) but decreased under CT. Insignificant changes in dry bulk density were observed on the conservation tillage plots whereas CT reduced dry bulk density by 15.3%. Saturated hydraulic conductivity fluctuated significantly under OT and CT, while remaining stable under RT and NT. Generally, significant variability in organic matter influenced changes in saturated volumetric water content and saturated hydraulic conductivity. Changes in dry bulk density on all the tilled plots (RT, OT, and CT) did not show any significant relationship with saturated volumetric water content. Likewise, no significant relationship between changes in bulk density and saturated hydraulic conductivity on all plots were observed. While organic matter improvements under OT positively correlated with saturated volumetric water content, its seasonal dynamics under saturated hydraulic conductivity can be further studied. CT causes high instabilities in both saturated volumetric water content and saturated hydraulic conductivity leading to impaired characteristics during the soil's consolidated state.
期刊介绍:
Soil Use and Management publishes in soil science, earth and environmental science, agricultural science, and engineering fields. The submitted papers should consider the underlying mechanisms governing the natural and anthropogenic processes which affect soil systems, and should inform policy makers and/or practitioners on the sustainable use and management of soil resources. Interdisciplinary studies, e.g. linking soil with climate change, biodiversity, global health, and the UN’s sustainable development goals, with strong novelty, wide implications, and unexpected outcomes are welcomed.