Zhiyuan Tan, Bin Chen, Liying Sun, Huimin Xu, Kun Zhang, Feng Chen
{"title":"基于改进型 YOLO v4 的辣椒目标识别与检测","authors":"Zhiyuan Tan, Bin Chen, Liying Sun, Huimin Xu, Kun Zhang, Feng Chen","doi":"10.5755/j01.itc.52.4.34183","DOIUrl":null,"url":null,"abstract":"In order to improve visual recognition accuracy of pepper and provide reliable technical support for agricultural production, an improved YOLOv4 algorithm for pepper target recognition and detection was proposed in this paper. By adding Mosaic data enhancement and CBAM (Conventional block attention module) attention mechanism to the primitive character extraction network, the method enhanced the learning ability of the target detection algorithm, made the network effectively suppress the interference features, and increased the attention to effective features. To improve the accuracy of identification. The improved network model was trained, verified and tested on the self-made data set. The results showed that the proposed algorithm could effectively improve the accuracy of pepper recognition under natural light, and finally improved the mean Average Precision (mAP) of the existing YOLOv4 algorithm from 88.95% to 98.36%.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"13 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pepper Target Recognition and Detection Based on Improved YOLO v4\",\"authors\":\"Zhiyuan Tan, Bin Chen, Liying Sun, Huimin Xu, Kun Zhang, Feng Chen\",\"doi\":\"10.5755/j01.itc.52.4.34183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve visual recognition accuracy of pepper and provide reliable technical support for agricultural production, an improved YOLOv4 algorithm for pepper target recognition and detection was proposed in this paper. By adding Mosaic data enhancement and CBAM (Conventional block attention module) attention mechanism to the primitive character extraction network, the method enhanced the learning ability of the target detection algorithm, made the network effectively suppress the interference features, and increased the attention to effective features. To improve the accuracy of identification. The improved network model was trained, verified and tested on the self-made data set. The results showed that the proposed algorithm could effectively improve the accuracy of pepper recognition under natural light, and finally improved the mean Average Precision (mAP) of the existing YOLOv4 algorithm from 88.95% to 98.36%.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.4.34183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.4.34183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Pepper Target Recognition and Detection Based on Improved YOLO v4
In order to improve visual recognition accuracy of pepper and provide reliable technical support for agricultural production, an improved YOLOv4 algorithm for pepper target recognition and detection was proposed in this paper. By adding Mosaic data enhancement and CBAM (Conventional block attention module) attention mechanism to the primitive character extraction network, the method enhanced the learning ability of the target detection algorithm, made the network effectively suppress the interference features, and increased the attention to effective features. To improve the accuracy of identification. The improved network model was trained, verified and tested on the self-made data set. The results showed that the proposed algorithm could effectively improve the accuracy of pepper recognition under natural light, and finally improved the mean Average Precision (mAP) of the existing YOLOv4 algorithm from 88.95% to 98.36%.
期刊介绍:
Periodical journal covers a wide field of computer science and control systems related problems including:
-Software and hardware engineering;
-Management systems engineering;
-Information systems and databases;
-Embedded systems;
-Physical systems modelling and application;
-Computer networks and cloud computing;
-Data visualization;
-Human-computer interface;
-Computer graphics, visual analytics, and multimedia systems.