Sagar R. Khirsariya, Snehal Rao, Jignesh P. Chauhan
{"title":"分数修正川原方程的求解:一种半解析方法","authors":"Sagar R. Khirsariya, Snehal Rao, Jignesh P. Chauhan","doi":"10.5206/mase/16369","DOIUrl":null,"url":null,"abstract":"The present study examines a semi-analytical method known as the Fractional Residual Power Series Method for obtaining solutions to the non-linear, time-fractional Kawahara and modified Kawahara equations. These equations are fifth-order, non-linear partial differential equations that arise in the context of shallow water waves. The analytical process and findings are compared with those obtained from the well-known Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). The results obtained from the Fractional Residual Power Series Method are found to be more efficient, reliable, and easier to implement compared to other analytical and semi-analytical methods.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of fractional modified Kawahara equation: a semi-analytic approach\",\"authors\":\"Sagar R. Khirsariya, Snehal Rao, Jignesh P. Chauhan\",\"doi\":\"10.5206/mase/16369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study examines a semi-analytical method known as the Fractional Residual Power Series Method for obtaining solutions to the non-linear, time-fractional Kawahara and modified Kawahara equations. These equations are fifth-order, non-linear partial differential equations that arise in the context of shallow water waves. The analytical process and findings are compared with those obtained from the well-known Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). The results obtained from the Fractional Residual Power Series Method are found to be more efficient, reliable, and easier to implement compared to other analytical and semi-analytical methods.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/16369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/16369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solution of fractional modified Kawahara equation: a semi-analytic approach
The present study examines a semi-analytical method known as the Fractional Residual Power Series Method for obtaining solutions to the non-linear, time-fractional Kawahara and modified Kawahara equations. These equations are fifth-order, non-linear partial differential equations that arise in the context of shallow water waves. The analytical process and findings are compared with those obtained from the well-known Variational Iteration Method (VIM) and Homotopy Perturbation Method (HPM). The results obtained from the Fractional Residual Power Series Method are found to be more efficient, reliable, and easier to implement compared to other analytical and semi-analytical methods.