{"title":"2 和 3 的倍数分割数之和的可分割性","authors":"Nayandeep Deka Baruah","doi":"10.1017/s0004972723001351","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_inline1.png\" />\n\t\t<jats:tex-math>\n$p(n)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> denotes the number of unrestricted partitions of a positive integer <jats:italic>n</jats:italic> (and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_inline2.png\" />\n\t\t<jats:tex-math>\n$p(0)=1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_inline3.png\" />\n\t\t<jats:tex-math>\n$p(n)=0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_inline4.png\" />\n\t\t<jats:tex-math>\n$n<0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>), then for all nonnegative integers <jats:italic>m</jats:italic>, <jats:disp-formula>\n\t <jats:alternatives>\n\t\t<jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_eqnu1.png\" />\n\t\t<jats:tex-math>\n$$ \\begin{align*}\\sum_{k=0}^\\infty p(24m+23-\\omega(-2k))+\\sum_{k=1}^\\infty p(24m+23-\\omega(2k))\\equiv 0~ (\\text{mod}~144),\\end{align*} $$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:disp-formula></jats:p>\n\t <jats:p>where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001351_inline5.png\" />\n\t\t<jats:tex-math>\n$\\omega (k)=k(3k+1)/2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"3 9","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIVISIBILITY OF SUMS OF PARTITION NUMBERS BY MULTIPLES OF 2 AND 3\",\"authors\":\"Nayandeep Deka Baruah\",\"doi\":\"10.1017/s0004972723001351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$p(n)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> denotes the number of unrestricted partitions of a positive integer <jats:italic>n</jats:italic> (and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$p(0)=1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$p(n)=0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> for <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n<0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>), then for all nonnegative integers <jats:italic>m</jats:italic>, <jats:disp-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_eqnu1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$$ \\\\begin{align*}\\\\sum_{k=0}^\\\\infty p(24m+23-\\\\omega(-2k))+\\\\sum_{k=1}^\\\\infty p(24m+23-\\\\omega(2k))\\\\equiv 0~ (\\\\text{mod}~144),\\\\end{align*} $$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:disp-formula></jats:p>\\n\\t <jats:p>where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001351_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\omega (k)=k(3k+1)/2$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"3 9\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001351\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001351","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
DIVISIBILITY OF SUMS OF PARTITION NUMBERS BY MULTIPLES OF 2 AND 3
We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if
$p(n)$
denotes the number of unrestricted partitions of a positive integer n (and
$p(0)=1$
,
$p(n)=0$
for
$n<0$
), then for all nonnegative integers m,
$$ \begin{align*}\sum_{k=0}^\infty p(24m+23-\omega(-2k))+\sum_{k=1}^\infty p(24m+23-\omega(2k))\equiv 0~ (\text{mod}~144),\end{align*} $$
where
$\omega (k)=k(3k+1)/2$
.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society