{"title":"1 型糖尿病和/或乳糜泻患儿 B 细胞亚群的变化。","authors":"Andrea Tompa, Maria Faresjö","doi":"10.1093/cei/uxad136","DOIUrl":null,"url":null,"abstract":"<p><p>Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shift in the B cell subsets between children with type 1 diabetes and/or celiac disease.\",\"authors\":\"Andrea Tompa, Maria Faresjö\",\"doi\":\"10.1093/cei/uxad136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.</p>\",\"PeriodicalId\":10268,\"journal\":{\"name\":\"Clinical and experimental immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and experimental immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cei/uxad136\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxad136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
我们的目的是描述合并诊断为1型糖尿病(T1D)和乳糜泻(C)的儿童的B细胞亚群模式,因为单一或双重诊断为这些自身免疫性疾病的儿童的外周B细胞亚群表型模式可能有所不同。用流式细胞术分析 B 细胞的分化/成熟标记表达,以确定过渡型、幼稚型和记忆型 B 细胞。过渡性 B 细胞(CD24hiCD38hiCD19+)和记忆性 B 细胞(CD24hiCD27+CD19+、CD1d+CD27+CD19+、CD5+CD1d+CD19+)被归类为具有调节能力的 B 细胞。合并诊断为 T1D 和 C 的儿童表现出外周 B 细胞亚群减少的模式。与 T1D 或 C 合并诊断的儿童相比,合并诊断的儿童的 B 细胞分区中记忆 B 亚群和 Bregs(包括活化亚群)的比例更高。在表达 CD39+ 的幼稚 B 细胞和记忆 B 细胞中也出现了类似的变化。记忆B细胞(CD1d+CD27+CD19+)更常见,而在合并诊断的儿童中,CD5+过渡B细胞的比例较低。在患有 T1D 或 C 的儿童中,外周 B 细胞区系以幼稚细胞为主。外周B细胞异源汇集亚群模式的差异反映了T1D和/或C患儿B细胞区系的变化。
Shift in the B cell subsets between children with type 1 diabetes and/or celiac disease.
Our purpose was to characterize the pattern of B cell subsets in children with a combined diagnosis of type 1 diabetes (T1D) and celiac disease (C) since children with single or double diagnosis of these autoimmune diseases may differ in peripheral B cell subset phenotype patterns. B cells were analyzed with flow cytometry for the expression of differentiation/maturation markers to identify transitional, naive, and memory B cells. Transitional (CD24hiCD38hiCD19+) and memory Bregs (mBregs; CD24hiCD27+CD19+, CD1d+CD27+CD19+, and CD5+CD1d+CD19+) were classified as B cells with regulatory capacity. Children with a combined diagnosis of T1D and C showed a pattern of diminished peripheral B cell subsets. The B cells compartment in children with combined diagnosis had higher percentages of memory B subsets and Bregs, including activated subsets, compared to children with either T1D or C. Children with combined diagnosis had a lower percentage of naive B cells (CD27-CD19+; IgD+CD19+) and an increased percentage of memory B cells (CD27+CD19+; IgD-CD19+). A similar alteration was seen among the CD39+ expressing naive and memory B cells. Memory Bregs (CD1d+CD27+CD19+) were more frequent, contrary to the lower percentage of CD5+ transitional Bregs in children with a combined diagnosis. In children with either T1D or C, the peripheral B cell compartment was dominated by naive cells. Differences in the pattern of heterogeneous peripheral B cell repertoire subsets reflect a shifting in the B cell compartment between children with T1D and/or C. This is an immunological challenge of impact on the pathophysiology of these autoimmune diseases.
期刊介绍:
Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice.
The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.