球间双谐波二次映射的能量密度

IF 0.6 4区 数学 Q3 MATHEMATICS
Rareş Ambrosie, Cezar Oniciuc
{"title":"球间双谐波二次映射的能量密度","authors":"Rareş Ambrosie,&nbsp;Cezar Oniciuc","doi":"10.1016/j.difgeo.2023.102096","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we first prove that a quadratic form from </span><span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>m</mi></mrow></msup></math></span> to <span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span> is non-harmonic biharmonic if and only if it has constant energy density <span><math><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Then, we give a positive answer to an open problem raised in <span>[1]</span> concerning the structure of non-harmonic biharmonic quadratic forms. As a direct application, using classification results for harmonic quadratic forms, we infer classification results for non-harmonic biharmonic quadratic forms.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"93 ","pages":"Article 102096"},"PeriodicalIF":0.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The energy density of biharmonic quadratic maps between spheres\",\"authors\":\"Rareş Ambrosie,&nbsp;Cezar Oniciuc\",\"doi\":\"10.1016/j.difgeo.2023.102096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we first prove that a quadratic form from </span><span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>m</mi></mrow></msup></math></span> to <span><math><msup><mrow><mrow><mi>S</mi></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span> is non-harmonic biharmonic if and only if it has constant energy density <span><math><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Then, we give a positive answer to an open problem raised in <span>[1]</span> concerning the structure of non-harmonic biharmonic quadratic forms. As a direct application, using classification results for harmonic quadratic forms, we infer classification results for non-harmonic biharmonic quadratic forms.</p></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"93 \",\"pages\":\"Article 102096\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224523001225\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523001225","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先证明,当且仅当从 Sm 到 Sn 的二次型具有恒定的能量密度 (m+1)/2 时,它是非谐波双谐波的。然后,我们给出了[1]中提出的关于非谐波双谐二次型结构的开放问题的正面答案。作为直接应用,我们利用谐二次型的分类结果来推断非谐双谐二次型的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The energy density of biharmonic quadratic maps between spheres

In this paper, we first prove that a quadratic form from Sm to Sn is non-harmonic biharmonic if and only if it has constant energy density (m+1)/2. Then, we give a positive answer to an open problem raised in [1] concerning the structure of non-harmonic biharmonic quadratic forms. As a direct application, using classification results for harmonic quadratic forms, we infer classification results for non-harmonic biharmonic quadratic forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信