Manali Chandnani, Disha Patel, Twinkle Patel, Aditi Buch
{"title":"芽孢杆菌中的酒石酸脱氢酶:通过动力学、结构和分子对接分析解密独特的催化多样性","authors":"Manali Chandnani, Disha Patel, Twinkle Patel, Aditi Buch","doi":"10.1007/s10930-023-10170-0","DOIUrl":null,"url":null,"abstract":"<div><p>Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from <i>P. putida</i> (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in <i>Bacillus</i> isolates and limited resemblance of <i>ycsA</i>-encoded protein sequences with pTDH rendered <i>Bacillus</i> TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from <i>B. subtilis</i> 168 (168bTDH) and <i>B. licheniformis</i> DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of <i>E. coli</i> BL21(DE3) cells, could significantly catalyze L-tartrate and <i>meso</i>-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis\",\"authors\":\"Manali Chandnani, Disha Patel, Twinkle Patel, Aditi Buch\",\"doi\":\"10.1007/s10930-023-10170-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from <i>P. putida</i> (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in <i>Bacillus</i> isolates and limited resemblance of <i>ycsA</i>-encoded protein sequences with pTDH rendered <i>Bacillus</i> TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from <i>B. subtilis</i> 168 (168bTDH) and <i>B. licheniformis</i> DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of <i>E. coli</i> BL21(DE3) cells, could significantly catalyze L-tartrate and <i>meso</i>-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.</p></div>\",\"PeriodicalId\":793,\"journal\":{\"name\":\"The Protein Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Protein Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10930-023-10170-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-023-10170-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tartrate Dehydrogenase in Bacillus Species: Deciphering Unique Catalytic Diversity Through Kinetic, Structural and Molecular Docking Analysis
Divergently evolved Tartrate dehydrogenase (TDH) exhibits multiple catalytic activities at a single active site; the enzyme from P. putida (pTDH) being structurally and biochemically well-characterized. Occurrence of TDH-associated ability to aerobically metabolize L-tartrate in Bacillus isolates and limited resemblance of ycsA-encoded protein sequences with pTDH rendered Bacillus TDH as an intriguing enzyme with possible catalytic diversity as well as evolutionary significance. The present study explores substrate interactions of TDHs from B. subtilis 168 (168bTDH) and B. licheniformis DSM-13 (429bTDH) through kinetic, structural and molecular docking-based analysis. Heterologously expressed bTDHs, purified from insoluble fractions of E. coli BL21(DE3) cells, could significantly catalyze L-tartrate and meso-tartrate as substrates in forward reaction. Unlike pTDH, bTDHs distinctly and more efficiently catalyzed the reverse reaction using dihydroxyfumarate substrate following sigmoidal kinetics; the ability being ~ 4 fold higher in 168bTDH. Their binding energies predicted from molecular docking, further substantiated the relative substrate specificities, while revealing major residues involved in protein-ligand interactions at active site. The kinetic analysis and homology modelling validated using Ramachandran Plot analysis predicted a dimeric nature for bTDH. Collectively, the results highlight unique catalytic potential of phylogenetically recent bTDHs, offering an important protein engineering target to mediate efficient enantioselective enzymatic biotransformations.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.