AAV 纯化方法的综合比较:碘三醇梯度离心法与免疫亲和层析法的比较

Advances in cell and gene therapy Pub Date : 2023-01-01 Epub Date: 2023-12-11 DOI:10.1155/2023/2339702
Anh K Lam, Patrick L Mulcrone, Dylan Frabutt, Junping Zhang, Matthew Chrzanowski, Sreevani Arisa, Maite Munoz, Xin Li, Moanaro Biswas, David Markusic, Roland W Herzog, Weidong Xiao
{"title":"AAV 纯化方法的综合比较:碘三醇梯度离心法与免疫亲和层析法的比较","authors":"Anh K Lam, Patrick L Mulcrone, Dylan Frabutt, Junping Zhang, Matthew Chrzanowski, Sreevani Arisa, Maite Munoz, Xin Li, Moanaro Biswas, David Markusic, Roland W Herzog, Weidong Xiao","doi":"10.1155/2023/2339702","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS<sup>™</sup> CaptureSelect<sup>™</sup> AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both <i>in vitro</i> and <i>in vivo</i> in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.</p>","PeriodicalId":72084,"journal":{"name":"Advances in cell and gene therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography.\",\"authors\":\"Anh K Lam, Patrick L Mulcrone, Dylan Frabutt, Junping Zhang, Matthew Chrzanowski, Sreevani Arisa, Maite Munoz, Xin Li, Moanaro Biswas, David Markusic, Roland W Herzog, Weidong Xiao\",\"doi\":\"10.1155/2023/2339702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS<sup>™</sup> CaptureSelect<sup>™</sup> AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both <i>in vitro</i> and <i>in vivo</i> in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.</p>\",\"PeriodicalId\":72084,\"journal\":{\"name\":\"Advances in cell and gene therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10735247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in cell and gene therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2339702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in cell and gene therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2339702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重组腺相关病毒(AAV)已成为基础研究和人类基因治疗领域广泛使用的基因递送平台。为了确保和提高 AAV 载体的安全性,人们致力于使用悬浮 HEK293 细胞开发载体生产工艺。在此,我们研究并比较了两种下游纯化方法,即碘克沙醇梯度超速离心法和免疫亲和层析法(POROS™ CaptureSelect™ AAVX 柱)。我们测试了多个单独生产的载体批次(包括 AAV5、AAV8 和 AAV9 血清型)。为了考虑批次间的差异,每批载体都被减半,然后通过碘克沙醇梯度离心法或亲和层析法进行纯化。同时,对纯化的载体进行了特征描述,并比较了体外转导和小鼠体内转导(使用多种转基因:高斯荧光素酶、eGFP 和人因子 IX)。结果发现,每种纯化方法在纯度、病毒基因组(vg)回收率和相对空颗粒含量方面都各有利弊。研究发现,转导效率的差异反映的是批次与批次之间的差异,而不是两种纯化方法之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography.

Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS CaptureSelect AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信