Satish G Jadhav, Ryan L Setten, Carlos Medina, Xian-Shu Cui, Steven F Dowdy
{"title":"设计、合成和生化分析旨在增强内体逃逸的分子。","authors":"Satish G Jadhav, Ryan L Setten, Carlos Medina, Xian-Shu Cui, Steven F Dowdy","doi":"10.1208/s12248-023-00876-5","DOIUrl":null,"url":null,"abstract":"<p><p>RNA therapeutics, including siRNAs, ASOs, and PMOs, have great potential to treat human disease. However, RNA therapeutics are too large, too charged, and/or too hydrophilic to cross the cellular membrane and are instead taken up into cells by endocytosis. Unfortunately, the vast majority of RNA therapeutics remain trapped inside endosomes (≥ 99%), which is the sole reason preventing their use to treat cancer, COVID, and other diseases. In contrast, enveloped viruses, such as influenza, also have an endosomal escape problem, but have evolved a highly efficient endosomal escape mechanism using trimeric hemagglutinin (HA) fusogenic protein. HA contains an outer hydrophilic domain (HA1) that masks an inner hydrophobic fusogenic/endosomal escape domain (HA2). Once inside endosomes, HA1 is shed to expose HA2 that, due to hydrophobicity, buries itself into the endosomal lipid bilayer, driving escape into the cytoplasm in a non-toxic fashion. To begin to address the RNA therapeutics rate-limiting endosomal escape problem, we report here a first step in the design and synthesis of a universal endosomal escape domain (uEED) that biomimics the enveloped virus escape mechanism. uEED contains an outer hydrophilic mask covalently attached to an inner hydrophobic escape domain. In plasma, uEED is inert and highly metabolically stable; however, when placed in endo/lysosomal conditions, uEED is activated by enzymatic removal of the hydrophilic mask, followed by self-immolation of the linker resulting in exposure of the hydrophobic indole ring domain in the absence of any hydrophilic tags. Thus, uEED is a synthetic biomimetic of the highly efficient viral endosomal escape mechanism.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Biochemical Analysis of a Molecule Designed to Enhance Endosomal Escape.\",\"authors\":\"Satish G Jadhav, Ryan L Setten, Carlos Medina, Xian-Shu Cui, Steven F Dowdy\",\"doi\":\"10.1208/s12248-023-00876-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA therapeutics, including siRNAs, ASOs, and PMOs, have great potential to treat human disease. However, RNA therapeutics are too large, too charged, and/or too hydrophilic to cross the cellular membrane and are instead taken up into cells by endocytosis. Unfortunately, the vast majority of RNA therapeutics remain trapped inside endosomes (≥ 99%), which is the sole reason preventing their use to treat cancer, COVID, and other diseases. In contrast, enveloped viruses, such as influenza, also have an endosomal escape problem, but have evolved a highly efficient endosomal escape mechanism using trimeric hemagglutinin (HA) fusogenic protein. HA contains an outer hydrophilic domain (HA1) that masks an inner hydrophobic fusogenic/endosomal escape domain (HA2). Once inside endosomes, HA1 is shed to expose HA2 that, due to hydrophobicity, buries itself into the endosomal lipid bilayer, driving escape into the cytoplasm in a non-toxic fashion. To begin to address the RNA therapeutics rate-limiting endosomal escape problem, we report here a first step in the design and synthesis of a universal endosomal escape domain (uEED) that biomimics the enveloped virus escape mechanism. uEED contains an outer hydrophilic mask covalently attached to an inner hydrophobic escape domain. In plasma, uEED is inert and highly metabolically stable; however, when placed in endo/lysosomal conditions, uEED is activated by enzymatic removal of the hydrophilic mask, followed by self-immolation of the linker resulting in exposure of the hydrophobic indole ring domain in the absence of any hydrophilic tags. Thus, uEED is a synthetic biomimetic of the highly efficient viral endosomal escape mechanism.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-023-00876-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-023-00876-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Design, Synthesis, and Biochemical Analysis of a Molecule Designed to Enhance Endosomal Escape.
RNA therapeutics, including siRNAs, ASOs, and PMOs, have great potential to treat human disease. However, RNA therapeutics are too large, too charged, and/or too hydrophilic to cross the cellular membrane and are instead taken up into cells by endocytosis. Unfortunately, the vast majority of RNA therapeutics remain trapped inside endosomes (≥ 99%), which is the sole reason preventing their use to treat cancer, COVID, and other diseases. In contrast, enveloped viruses, such as influenza, also have an endosomal escape problem, but have evolved a highly efficient endosomal escape mechanism using trimeric hemagglutinin (HA) fusogenic protein. HA contains an outer hydrophilic domain (HA1) that masks an inner hydrophobic fusogenic/endosomal escape domain (HA2). Once inside endosomes, HA1 is shed to expose HA2 that, due to hydrophobicity, buries itself into the endosomal lipid bilayer, driving escape into the cytoplasm in a non-toxic fashion. To begin to address the RNA therapeutics rate-limiting endosomal escape problem, we report here a first step in the design and synthesis of a universal endosomal escape domain (uEED) that biomimics the enveloped virus escape mechanism. uEED contains an outer hydrophilic mask covalently attached to an inner hydrophobic escape domain. In plasma, uEED is inert and highly metabolically stable; however, when placed in endo/lysosomal conditions, uEED is activated by enzymatic removal of the hydrophilic mask, followed by self-immolation of the linker resulting in exposure of the hydrophobic indole ring domain in the absence of any hydrophilic tags. Thus, uEED is a synthetic biomimetic of the highly efficient viral endosomal escape mechanism.
期刊介绍:
The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including:
· Drug Design and Discovery
· Pharmaceutical Biotechnology
· Biopharmaceutics, Formulation, and Drug Delivery
· Metabolism and Transport
· Pharmacokinetics, Pharmacodynamics, and Pharmacometrics
· Translational Research
· Clinical Evaluations and Therapeutic Outcomes
· Regulatory Science
We invite submissions under the following article types:
· Original Research Articles
· Reviews and Mini-reviews
· White Papers, Commentaries, and Editorials
· Meeting Reports
· Brief/Technical Reports and Rapid Communications
· Regulatory Notes
· Tutorials
· Protocols in the Pharmaceutical Sciences
In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.