{"title":"函数空间的线性同构和空间在其紧凑化中的位置","authors":"Mikołaj Krupski","doi":"10.4153/s0008414x23000779","DOIUrl":null,"url":null,"abstract":"<p>An old question of Arhangel’skii asks if the Menger property of a Tychonoff space <span>X</span> is preserved by homeomorphisms of the space <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C_p(X)$</span></span></img></span></span> of continuous real-valued functions on <span>X</span> endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$C_p(X)$</span></span></img></span></span> by looking at the way <span>X</span> is positioned in its (Čech–Stone) compactification.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear homeomorphisms of function spaces and the position of a space in its compactification\",\"authors\":\"Mikołaj Krupski\",\"doi\":\"10.4153/s0008414x23000779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An old question of Arhangel’skii asks if the Menger property of a Tychonoff space <span>X</span> is preserved by homeomorphisms of the space <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_p(X)$</span></span></img></span></span> of continuous real-valued functions on <span>X</span> endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220142853673-0028:S0008414X23000779:S0008414X23000779_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_p(X)$</span></span></img></span></span> by looking at the way <span>X</span> is positioned in its (Čech–Stone) compactification.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
阿尔汉格尔斯基(Arhangel'skii)的一个老问题是:X 上连续实值函数的空间 $C_p(X)$ 的同态性是否会保留 X 的门格尔性质?在线性同构的情况下,我们给出了肯定的答案。为此,我们开发了一种研究函数空间 $C_p(X)$ 的线性同构不变式的方法,即研究 X 在其(切赫-斯通)紧凑化中的定位方式。
Linear homeomorphisms of function spaces and the position of a space in its compactification
An old question of Arhangel’skii asks if the Menger property of a Tychonoff space X is preserved by homeomorphisms of the space $C_p(X)$ of continuous real-valued functions on X endowed with the pointwise topology. We provide affirmative answer in the case of linear homeomorphisms. To this end, we develop a method of studying invariants of linear homeomorphisms of function spaces $C_p(X)$ by looking at the way X is positioned in its (Čech–Stone) compactification.