{"title":"Prompt Sapper:用于构建人工智能链的 LLM 生产工具","authors":"Yu Cheng, Jieshan Chen, Qing Huang, Zhenchang Xing, Xiwei Xu, Qinghua Lu","doi":"10.1145/3638247","DOIUrl":null,"url":null,"abstract":"<p>The emergence of foundation models, such as large language models (LLMs) GPT-4 and text-to-image models DALL-E, has opened up numerous possibilities across various domains. People can now use natural language (i.e. prompts) to communicate with AI to perform tasks. While people can use foundation models through chatbots (e.g., ChatGPT), chat, regardless of the capabilities of the underlying models, is not a production tool for building reusable AI services. APIs like LangChain allow for LLM-based application development but require substantial programming knowledge, thus posing a barrier. To mitigate this, we systematically review, summarise, refine and extend the concept of AI chain by incorporating the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering, to systematize AI chain engineering methodology. We also develop a no-code integrated development environment, Prompt Sapper\n, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains, thereby improving the performance and quality of AI chains. With Prompt Sapper, AI chain engineers can compose prompt-based AI services on top of foundation models through chat-based requirement analysis and visual programming. Our user study evaluated and demonstrated the efficiency and correctness of Prompt Sapper.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"63 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Sapper: A LLM-Empowered Production Tool for Building AI Chains\",\"authors\":\"Yu Cheng, Jieshan Chen, Qing Huang, Zhenchang Xing, Xiwei Xu, Qinghua Lu\",\"doi\":\"10.1145/3638247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emergence of foundation models, such as large language models (LLMs) GPT-4 and text-to-image models DALL-E, has opened up numerous possibilities across various domains. People can now use natural language (i.e. prompts) to communicate with AI to perform tasks. While people can use foundation models through chatbots (e.g., ChatGPT), chat, regardless of the capabilities of the underlying models, is not a production tool for building reusable AI services. APIs like LangChain allow for LLM-based application development but require substantial programming knowledge, thus posing a barrier. To mitigate this, we systematically review, summarise, refine and extend the concept of AI chain by incorporating the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering, to systematize AI chain engineering methodology. We also develop a no-code integrated development environment, Prompt Sapper\\n, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains, thereby improving the performance and quality of AI chains. With Prompt Sapper, AI chain engineers can compose prompt-based AI services on top of foundation models through chat-based requirement analysis and visual programming. Our user study evaluated and demonstrated the efficiency and correctness of Prompt Sapper.</p>\",\"PeriodicalId\":50933,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638247\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Prompt Sapper: A LLM-Empowered Production Tool for Building AI Chains
The emergence of foundation models, such as large language models (LLMs) GPT-4 and text-to-image models DALL-E, has opened up numerous possibilities across various domains. People can now use natural language (i.e. prompts) to communicate with AI to perform tasks. While people can use foundation models through chatbots (e.g., ChatGPT), chat, regardless of the capabilities of the underlying models, is not a production tool for building reusable AI services. APIs like LangChain allow for LLM-based application development but require substantial programming knowledge, thus posing a barrier. To mitigate this, we systematically review, summarise, refine and extend the concept of AI chain by incorporating the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering, to systematize AI chain engineering methodology. We also develop a no-code integrated development environment, Prompt Sapper
, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains, thereby improving the performance and quality of AI chains. With Prompt Sapper, AI chain engineers can compose prompt-based AI services on top of foundation models through chat-based requirement analysis and visual programming. Our user study evaluated and demonstrated the efficiency and correctness of Prompt Sapper.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.