Yasmina Al Ghadban, Huiqi (Yvonne) Lu, Uday Adavi, Ankita Sharma, Sridevi Gara, Neelanjana Das, Bhaskar Kumar, Renu John, Praveen Devarsetty, Jane E. Hirst
{"title":"改革医疗保健教育:利用检索增强生成技术,利用大型语言模型促进一线卫生工作者的能力建设","authors":"Yasmina Al Ghadban, Huiqi (Yvonne) Lu, Uday Adavi, Ankita Sharma, Sridevi Gara, Neelanjana Das, Bhaskar Kumar, Renu John, Praveen Devarsetty, Jane E. Hirst","doi":"10.1101/2023.12.15.23300009","DOIUrl":null,"url":null,"abstract":"In recent years, large language models (LLMs) have emerged as a transformative force in several domains, including medical education and healthcare. This paper presents a case study on the practical application of using retrieval-augmented generation (RAG) based models for enhancing healthcare education in low- and middle-income countries. The model described in this paper, SMART<em>health</em> GPT, stems from the necessity for accessible and locally relevant medical information to aid community health workers in delivering high-quality maternal care. We describe the development process of the complete RAG pipeline, including the creation of a knowledge base of Indian pregnancy-related guidelines, knowledge embedding retrieval, parameter selection and optimization, and answer generation. This case study highlights the potential of LLMs in building frontline healthcare worker capacity and enhancing guideline-based health education; and offers insights for similar applications in resource-limited settings. It serves as a reference for machine learning scientists, educators, healthcare professionals, and policymakers aiming to harness the power of LLMs for substantial educational improvement.","PeriodicalId":501409,"journal":{"name":"medRxiv - Obstetrics and Gynecology","volume":"305 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Healthcare Education: Harnessing Large Language Models for Frontline Health Worker Capacity Building using Retrieval-Augmented Generation\",\"authors\":\"Yasmina Al Ghadban, Huiqi (Yvonne) Lu, Uday Adavi, Ankita Sharma, Sridevi Gara, Neelanjana Das, Bhaskar Kumar, Renu John, Praveen Devarsetty, Jane E. Hirst\",\"doi\":\"10.1101/2023.12.15.23300009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, large language models (LLMs) have emerged as a transformative force in several domains, including medical education and healthcare. This paper presents a case study on the practical application of using retrieval-augmented generation (RAG) based models for enhancing healthcare education in low- and middle-income countries. The model described in this paper, SMART<em>health</em> GPT, stems from the necessity for accessible and locally relevant medical information to aid community health workers in delivering high-quality maternal care. We describe the development process of the complete RAG pipeline, including the creation of a knowledge base of Indian pregnancy-related guidelines, knowledge embedding retrieval, parameter selection and optimization, and answer generation. This case study highlights the potential of LLMs in building frontline healthcare worker capacity and enhancing guideline-based health education; and offers insights for similar applications in resource-limited settings. It serves as a reference for machine learning scientists, educators, healthcare professionals, and policymakers aiming to harness the power of LLMs for substantial educational improvement.\",\"PeriodicalId\":501409,\"journal\":{\"name\":\"medRxiv - Obstetrics and Gynecology\",\"volume\":\"305 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Obstetrics and Gynecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.12.15.23300009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Obstetrics and Gynecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.15.23300009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transforming Healthcare Education: Harnessing Large Language Models for Frontline Health Worker Capacity Building using Retrieval-Augmented Generation
In recent years, large language models (LLMs) have emerged as a transformative force in several domains, including medical education and healthcare. This paper presents a case study on the practical application of using retrieval-augmented generation (RAG) based models for enhancing healthcare education in low- and middle-income countries. The model described in this paper, SMARThealth GPT, stems from the necessity for accessible and locally relevant medical information to aid community health workers in delivering high-quality maternal care. We describe the development process of the complete RAG pipeline, including the creation of a knowledge base of Indian pregnancy-related guidelines, knowledge embedding retrieval, parameter selection and optimization, and answer generation. This case study highlights the potential of LLMs in building frontline healthcare worker capacity and enhancing guideline-based health education; and offers insights for similar applications in resource-limited settings. It serves as a reference for machine learning scientists, educators, healthcare professionals, and policymakers aiming to harness the power of LLMs for substantial educational improvement.