最小顶点模型解释了羊膜如何在果蝇背侧闭合过程中避免流体化

Indrajit Tah, Daniel Haertter, Janice M. Crawford, Daniel P. Kiehart, Christoph F. Schmidt, Andrea J. Liu
{"title":"最小顶点模型解释了羊膜如何在果蝇背侧闭合过程中避免流体化","authors":"Indrajit Tah, Daniel Haertter, Janice M. Crawford, Daniel P. Kiehart, Christoph F. Schmidt, Andrea J. Liu","doi":"arxiv-2312.12926","DOIUrl":null,"url":null,"abstract":"Dorsal closure is a process that occurs during embryogenesis of Drosophila\nmelanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick\nepithelial tissue that fills the dorsal opening, shrinks as the lateral\nepidermis sheets converge and eventually merge. During this process, the aspect\nratio of amnioserosa cells increases markedly. The standard 2-dimensional\nvertex model, which successfully describes tissue sheet mechanics in multiple\ncontexts, would in this case predict that the tissue should fluidize via cell\nneighbor changes. Surprisingly, however, the amnioserosa remains an elastic\nsolid with no such events. We here present a minimal extension to the vertex\nmodel that explains how the amnioserosa can achieve this unexpected behavior.\nWe show that continuous shrinkage of the preferred cell perimeter and cell\nperimeter polydispersity lead to the retention of the solid state of the\namnioserosa. Our model accurately captures measured cell shape and orientation\nchanges and predicts non-monotonic junction tension that we confirm with laser\nablation experiments.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure\",\"authors\":\"Indrajit Tah, Daniel Haertter, Janice M. Crawford, Daniel P. Kiehart, Christoph F. Schmidt, Andrea J. Liu\",\"doi\":\"arxiv-2312.12926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dorsal closure is a process that occurs during embryogenesis of Drosophila\\nmelanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick\\nepithelial tissue that fills the dorsal opening, shrinks as the lateral\\nepidermis sheets converge and eventually merge. During this process, the aspect\\nratio of amnioserosa cells increases markedly. The standard 2-dimensional\\nvertex model, which successfully describes tissue sheet mechanics in multiple\\ncontexts, would in this case predict that the tissue should fluidize via cell\\nneighbor changes. Surprisingly, however, the amnioserosa remains an elastic\\nsolid with no such events. We here present a minimal extension to the vertex\\nmodel that explains how the amnioserosa can achieve this unexpected behavior.\\nWe show that continuous shrinkage of the preferred cell perimeter and cell\\nperimeter polydispersity lead to the retention of the solid state of the\\namnioserosa. Our model accurately captures measured cell shape and orientation\\nchanges and predicts non-monotonic junction tension that we confirm with laser\\nablation experiments.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.12926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背闭合是果蝇胚胎发生过程中的一个过程。在背侧闭合过程中,填充背侧开口的单细胞厚表皮组织羊膜(AS)会随着侧表皮片的汇聚而收缩,并最终合并。在这一过程中,羊膜细胞的纵横比明显增加。标准的二维顶点模型成功地描述了多种情况下的组织片力学,在这种情况下,该模型预测组织应该通过细胞邻接变化而流动。然而,令人惊讶的是,羊膜仍然是一个弹性固体,没有发生此类事件。我们在这里提出了顶点模型的最小扩展,解释了羊膜组织如何实现这种意想不到的行为。我们的研究表明,首选细胞周长的持续收缩和细胞周长的多分散性导致了羊膜组织固态的保持。我们的模型准确地捕捉到了测量到的细胞形状和方向变化,并预测了非单调的交界张力,我们通过激光烧蚀实验证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal vertex model explains how the amnioserosa avoids fluidization during Drosophila dorsal closure
Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, the aspect ratio of amnioserosa cells increases markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrinkage of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts non-monotonic junction tension that we confirm with laser ablation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信